#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
This is an example dag for using the KubernetesPodOperator.
"""
from __future__ import annotations
import os
from datetime import datetime
from kubernetes.client import models as k8s
from airflow import DAG
from airflow.operators.bash import BashOperator
from airflow.providers.cncf.kubernetes.operators.pod import KubernetesPodOperator
from airflow.providers.cncf.kubernetes.secret import Secret
# [START howto_operator_k8s_cluster_resources]
[docs]secret_file = Secret("volume", "/etc/sql_conn", "airflow-secrets", "sql_alchemy_conn")
[docs]secret_env = Secret("env", "SQL_CONN", "airflow-secrets", "sql_alchemy_conn")
[docs]secret_all_keys = Secret("env", None, "airflow-secrets-2")
[docs]volume_mount = k8s.V1VolumeMount(
name="test-volume", mount_path="/root/mount_file", sub_path=None, read_only=True
)
[docs]configmaps = [
k8s.V1EnvFromSource(config_map_ref=k8s.V1ConfigMapEnvSource(name="test-configmap-1")),
k8s.V1EnvFromSource(config_map_ref=k8s.V1ConfigMapEnvSource(name="test-configmap-2")),
]
[docs]volume = k8s.V1Volume(
name="test-volume",
persistent_volume_claim=k8s.V1PersistentVolumeClaimVolumeSource(claim_name="test-volume"),
)
[docs]port = k8s.V1ContainerPort(name="http", container_port=80)
[docs]init_container_volume_mounts = [
k8s.V1VolumeMount(mount_path="/etc/foo", name="test-volume", sub_path=None, read_only=True)
]
[docs]init_environments = [k8s.V1EnvVar(name="key1", value="value1"), k8s.V1EnvVar(name="key2", value="value2")]
[docs]init_container = k8s.V1Container(
name="init-container",
image="ubuntu:16.04",
env=init_environments,
volume_mounts=init_container_volume_mounts,
command=["bash", "-cx"],
args=["echo 10"],
)
[docs]affinity = k8s.V1Affinity(
node_affinity=k8s.V1NodeAffinity(
preferred_during_scheduling_ignored_during_execution=[
k8s.V1PreferredSchedulingTerm(
weight=1,
preference=k8s.V1NodeSelectorTerm(
match_expressions=[
k8s.V1NodeSelectorRequirement(key="disktype", operator="In", values=["ssd"])
]
),
)
]
),
pod_affinity=k8s.V1PodAffinity(
required_during_scheduling_ignored_during_execution=[
k8s.V1WeightedPodAffinityTerm(
weight=1,
pod_affinity_term=k8s.V1PodAffinityTerm(
label_selector=k8s.V1LabelSelector(
match_expressions=[
k8s.V1LabelSelectorRequirement(key="security", operator="In", values="S1")
]
),
topology_key="failure-domain.beta.kubernetes.io/zone",
),
)
]
),
)
[docs]tolerations = [k8s.V1Toleration(key="key", operator="Equal", value="value")]
# [END howto_operator_k8s_cluster_resources]
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_kubernetes_operator"
with DAG(
dag_id="example_kubernetes_operator",
schedule=None,
start_date=datetime(2021, 1, 1),
tags=["example"],
) as dag:
[docs] k = KubernetesPodOperator(
namespace="default",
image="ubuntu:16.04",
cmds=["bash", "-cx"],
arguments=["echo", "10"],
labels={"foo": "bar"},
secrets=[secret_file, secret_env, secret_all_keys],
ports=[port],
volumes=[volume],
volume_mounts=[volume_mount],
env_from=configmaps,
name="airflow-test-pod",
task_id="task",
affinity=affinity,
on_finish_action="delete_pod",
hostnetwork=False,
tolerations=tolerations,
init_containers=[init_container],
priority_class_name="medium",
)
# [START howto_operator_k8s_private_image]
quay_k8s = KubernetesPodOperator(
namespace="default",
image="quay.io/apache/bash",
image_pull_secrets=[k8s.V1LocalObjectReference("testquay")],
cmds=["bash", "-cx"],
arguments=["echo", "10", "echo pwd"],
labels={"foo": "bar"},
name="airflow-private-image-pod",
on_finish_action="delete_pod",
in_cluster=True,
task_id="task-two",
get_logs=True,
)
# [END howto_operator_k8s_private_image]
# [START howto_operator_k8s_write_xcom]
write_xcom = KubernetesPodOperator(
namespace="default",
image="alpine",
cmds=["sh", "-c", "mkdir -p /airflow/xcom/;echo '[1,2,3,4]' > /airflow/xcom/return.json"],
name="write-xcom",
do_xcom_push=True,
on_finish_action="delete_pod",
in_cluster=True,
task_id="write-xcom",
get_logs=True,
)
pod_task_xcom_result = BashOperator(
bash_command="echo \"{{ task_instance.xcom_pull('write-xcom')[0] }}\"",
task_id="pod_task_xcom_result",
)
write_xcom >> pod_task_xcom_result
# [END howto_operator_k8s_write_xcom]
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)