#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from functools import cached_property
from typing import TYPE_CHECKING, Sequence
from airflow.callbacks.base_callback_sink import BaseCallbackSink
from airflow.callbacks.callback_requests import CallbackRequest
from airflow.configuration import conf
from airflow.providers.celery.executors.celery_executor import CeleryExecutor
try:
from airflow.providers.cncf.kubernetes.executors.kubernetes_executor import KubernetesExecutor
except ImportError as e:
from airflow.exceptions import AirflowOptionalProviderFeatureException
raise AirflowOptionalProviderFeatureException(e)
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.providers_configuration_loader import providers_configuration_loaded
if TYPE_CHECKING:
from airflow.executors.base_executor import CommandType, EventBufferValueType, QueuedTaskInstanceType
from airflow.models.taskinstance import SimpleTaskInstance, TaskInstance
from airflow.models.taskinstancekey import TaskInstanceKey
[docs]class CeleryKubernetesExecutor(LoggingMixin):
"""
CeleryKubernetesExecutor consists of CeleryExecutor and KubernetesExecutor.
It chooses an executor to use based on the queue defined on the task.
When the queue is the value of ``kubernetes_queue`` in section ``[celery_kubernetes_executor]``
of the configuration (default value: `kubernetes`), KubernetesExecutor is selected to run the task,
otherwise, CeleryExecutor is used.
"""
[docs] supports_ad_hoc_ti_run: bool = True
[docs] supports_pickling: bool = True
[docs] supports_sentry: bool = False
[docs] is_single_threaded: bool = False
[docs] is_production: bool = True
[docs] serve_logs: bool = False
[docs] change_sensor_mode_to_reschedule: bool = False
[docs] callback_sink: BaseCallbackSink | None = None
@cached_property
@providers_configuration_loaded
[docs] def kubernetes_queue(self) -> str:
return conf.get("celery_kubernetes_executor", "kubernetes_queue")
def __init__(self, celery_executor: CeleryExecutor, kubernetes_executor: KubernetesExecutor):
super().__init__()
self._job_id: int | None = None
self.celery_executor = celery_executor
self.kubernetes_executor = kubernetes_executor
self.kubernetes_executor.kubernetes_queue = self.kubernetes_queue
@property
[docs] def queued_tasks(self) -> dict[TaskInstanceKey, QueuedTaskInstanceType]:
"""Return queued tasks from celery and kubernetes executor."""
queued_tasks = self.celery_executor.queued_tasks.copy()
queued_tasks.update(self.kubernetes_executor.queued_tasks)
return queued_tasks
@property
[docs] def running(self) -> set[TaskInstanceKey]:
"""Return running tasks from celery and kubernetes executor."""
return self.celery_executor.running.union(self.kubernetes_executor.running)
@property
[docs] def job_id(self) -> int | None:
"""
Inherited attribute from BaseExecutor.
Since this is not really an executor, but a wrapper of executors
we implemented it as property, so we can have custom setter.
"""
return self._job_id
@job_id.setter
def job_id(self, value: int | None) -> None:
"""Expose job ID for SchedulerJob."""
self._job_id = value
self.kubernetes_executor.job_id = value
self.celery_executor.job_id = value
[docs] def start(self) -> None:
"""Start celery and kubernetes executor."""
self.celery_executor.start()
self.kubernetes_executor.start()
@property
[docs] def slots_available(self) -> int:
"""Number of new tasks this executor instance can accept."""
return self.celery_executor.slots_available
[docs] def queue_command(
self,
task_instance: TaskInstance,
command: CommandType,
priority: int = 1,
queue: str | None = None,
) -> None:
"""Queues command via celery or kubernetes executor."""
executor = self._router(task_instance)
self.log.debug("Using executor: %s for %s", executor.__class__.__name__, task_instance.key)
executor.queue_command(task_instance, command, priority, queue)
[docs] def queue_task_instance(
self,
task_instance: TaskInstance,
mark_success: bool = False,
pickle_id: int | None = None,
ignore_all_deps: bool = False,
ignore_depends_on_past: bool = False,
wait_for_past_depends_before_skipping: bool = False,
ignore_task_deps: bool = False,
ignore_ti_state: bool = False,
pool: str | None = None,
cfg_path: str | None = None,
) -> None:
"""Queues task instance via celery or kubernetes executor."""
from airflow.models.taskinstance import SimpleTaskInstance
executor = self._router(SimpleTaskInstance.from_ti(task_instance))
self.log.debug(
"Using executor: %s to queue_task_instance for %s", executor.__class__.__name__, task_instance.key
)
executor.queue_task_instance(
task_instance=task_instance,
mark_success=mark_success,
pickle_id=pickle_id,
ignore_all_deps=ignore_all_deps,
ignore_depends_on_past=ignore_depends_on_past,
wait_for_past_depends_before_skipping=wait_for_past_depends_before_skipping,
ignore_task_deps=ignore_task_deps,
ignore_ti_state=ignore_ti_state,
pool=pool,
cfg_path=cfg_path,
)
[docs] def get_task_log(self, ti: TaskInstance, try_number: int) -> tuple[list[str], list[str]]:
"""Fetch task log from Kubernetes executor."""
if ti.queue == self.kubernetes_executor.kubernetes_queue:
return self.kubernetes_executor.get_task_log(ti=ti, try_number=try_number)
return [], []
[docs] def has_task(self, task_instance: TaskInstance) -> bool:
"""
Checks if a task is either queued or running in either celery or kubernetes executor.
:param task_instance: TaskInstance
:return: True if the task is known to this executor
"""
return self.celery_executor.has_task(task_instance) or self.kubernetes_executor.has_task(
task_instance
)
[docs] def heartbeat(self) -> None:
"""Heartbeat sent to trigger new jobs in celery and kubernetes executor."""
self.celery_executor.heartbeat()
self.kubernetes_executor.heartbeat()
[docs] def get_event_buffer(
self, dag_ids: list[str] | None = None
) -> dict[TaskInstanceKey, EventBufferValueType]:
"""
Return and flush the event buffer from celery and kubernetes executor.
:param dag_ids: dag_ids to return events for, if None returns all
:return: a dict of events
"""
cleared_events_from_celery = self.celery_executor.get_event_buffer(dag_ids)
cleared_events_from_kubernetes = self.kubernetes_executor.get_event_buffer(dag_ids)
return {**cleared_events_from_celery, **cleared_events_from_kubernetes}
[docs] def try_adopt_task_instances(self, tis: Sequence[TaskInstance]) -> Sequence[TaskInstance]:
"""
Try to adopt running task instances that have been abandoned by a SchedulerJob dying.
Anything that is not adopted will be cleared by the scheduler (and then become eligible for
re-scheduling)
:return: any TaskInstances that were unable to be adopted
"""
celery_tis = [ti for ti in tis if ti.queue != self.kubernetes_queue]
kubernetes_tis = [ti for ti in tis if ti.queue == self.kubernetes_queue]
return [
*self.celery_executor.try_adopt_task_instances(celery_tis),
*self.kubernetes_executor.try_adopt_task_instances(kubernetes_tis),
]
[docs] def cleanup_stuck_queued_tasks(self, tis: list[TaskInstance]) -> list[str]:
celery_tis = [ti for ti in tis if ti.queue != self.kubernetes_queue]
kubernetes_tis = [ti for ti in tis if ti.queue == self.kubernetes_queue]
return [
*self.celery_executor.cleanup_stuck_queued_tasks(celery_tis),
*self.kubernetes_executor.cleanup_stuck_queued_tasks(kubernetes_tis),
]
[docs] def end(self) -> None:
"""End celery and kubernetes executor."""
self.celery_executor.end()
self.kubernetes_executor.end()
[docs] def terminate(self) -> None:
"""Terminate celery and kubernetes executor."""
self.celery_executor.terminate()
self.kubernetes_executor.terminate()
def _router(self, simple_task_instance: SimpleTaskInstance) -> CeleryExecutor | KubernetesExecutor:
"""
Return either celery_executor or kubernetes_executor.
:param simple_task_instance: SimpleTaskInstance
:return: celery_executor or kubernetes_executor
"""
if simple_task_instance.queue == self.kubernetes_queue:
return self.kubernetes_executor
return self.celery_executor
[docs] def debug_dump(self) -> None:
"""Called in response to SIGUSR2 by the scheduler."""
self.log.info("Dumping CeleryExecutor state")
self.celery_executor.debug_dump()
self.log.info("Dumping KubernetesExecutor state")
self.kubernetes_executor.debug_dump()
[docs] def send_callback(self, request: CallbackRequest) -> None:
"""Sends callback for execution.
:param request: Callback request to be executed.
"""
if not self.callback_sink:
raise ValueError("Callback sink is not ready.")
self.callback_sink.send(request)
@staticmethod
[docs] def get_cli_commands() -> list:
return CeleryExecutor.get_cli_commands() + KubernetesExecutor.get_cli_commands()