Source code for airflow.providers.apache.spark.decorators.pyspark
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import inspect
from collections.abc import Callable, Sequence
from airflow.providers.apache.spark.operators.spark_pyspark import SPARK_CONTEXT_KEYS, PySparkOperator
from airflow.providers.common.compat.sdk import (
DecoratedOperator,
TaskDecorator,
task_decorator_factory,
)
class _PySparkDecoratedOperator(DecoratedOperator, PySparkOperator):
custom_operator_name = "@task.pyspark"
def __init__(
self,
*,
python_callable: Callable,
conn_id: str | None = None,
config_kwargs: dict | None = None,
op_args: Sequence | None = None,
op_kwargs: dict | None = None,
**kwargs,
) -> None:
kwargs_to_upstream = {
"python_callable": python_callable,
"op_args": op_args,
"op_kwargs": op_kwargs,
}
signature = inspect.signature(python_callable)
parameters = [
param.replace(default=None) if param.name in SPARK_CONTEXT_KEYS else param
for param in signature.parameters.values()
]
# mypy does not understand __signature__ attribute
# see https://github.com/python/mypy/issues/12472
python_callable.__signature__ = signature.replace(parameters=parameters) # type: ignore[attr-defined]
super().__init__(
kwargs_to_upstream=kwargs_to_upstream,
python_callable=python_callable,
config_kwargs=config_kwargs,
conn_id=conn_id,
op_args=op_args,
op_kwargs=op_kwargs,
**kwargs,
)
[docs]
def pyspark_task(
python_callable: Callable | None = None,
multiple_outputs: bool | None = None,
**kwargs,
) -> TaskDecorator:
return task_decorator_factory(
python_callable=python_callable,
multiple_outputs=multiple_outputs,
decorated_operator_class=_PySparkDecoratedOperator,
**kwargs,
)