Source code for tests.system.providers.apache.spark.example_pyspark
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import typing
import pendulum
if typing.TYPE_CHECKING:
import pandas as pd
from pyspark import SparkContext
from pyspark.sql import SparkSession
from airflow.decorators import dag, task
@dag(
schedule=None,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
catchup=False,
tags=["example"],
)
[docs]def example_pyspark():
"""
### Example Pyspark DAG
This is an example DAG which uses pyspark
"""
# [START task_pyspark]
@task.pyspark(conn_id="spark-local")
def spark_task(spark: SparkSession, sc: SparkContext) -> pd.DataFrame:
df = spark.createDataFrame(
[
(1, "John Doe", 21),
(2, "Jane Doe", 22),
(3, "Joe Bloggs", 23),
],
["id", "name", "age"],
)
df.show()
return df.toPandas()
# [END task_pyspark]
@task
def print_df(df: pd.DataFrame):
print(df)
df = spark_task()
print_df(df)
# work around pre-commit
[docs]dag = example_pyspark() # type: ignore
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)