Source code for airflow.providers.apache.spark.operators.spark_submit

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Sequence

from airflow.models import BaseOperator
from airflow.providers.apache.spark.hooks.spark_submit import SparkSubmitHook
from airflow.settings import WEB_COLORS

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class SparkSubmitOperator(BaseOperator): """ Wrap the spark-submit binary to kick off a spark-submit job; requires "spark-submit" binary in the PATH. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SparkSubmitOperator` :param application: The application that submitted as a job, either jar or py file. (templated) :param conf: Arbitrary Spark configuration properties (templated) :param conn_id: The :ref:`spark connection id <howto/connection:spark>` as configured in Airflow administration. When an invalid connection_id is supplied, it will default to yarn. :param files: Upload additional files to the executor running the job, separated by a comma. Files will be placed in the working directory of each executor. For example, serialized objects. (templated) :param py_files: Additional python files used by the job, can be .zip, .egg or .py. (templated) :param jars: Submit additional jars to upload and place them in executor classpath. (templated) :param driver_class_path: Additional, driver-specific, classpath settings. (templated) :param java_class: the main class of the Java application :param packages: Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. (templated) :param exclude_packages: Comma-separated list of maven coordinates of jars to exclude while resolving the dependencies provided in 'packages' (templated) :param repositories: Comma-separated list of additional remote repositories to search for the maven coordinates given with 'packages' :param total_executor_cores: (Standalone & Mesos only) Total cores for all executors (Default: all the available cores on the worker) :param executor_cores: (Standalone & YARN only) Number of cores per executor (Default: 2) :param executor_memory: Memory per executor (e.g. 1000M, 2G) (Default: 1G) :param driver_memory: Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G) :param keytab: Full path to the file that contains the keytab (templated) :param principal: The name of the kerberos principal used for keytab (templated) :param proxy_user: User to impersonate when submitting the application (templated) :param name: Name of the job (default airflow-spark). (templated) :param num_executors: Number of executors to launch :param status_poll_interval: Seconds to wait between polls of driver status in cluster mode (Default: 1) :param application_args: Arguments for the application being submitted (templated) :param env_vars: Environment variables for spark-submit. It supports yarn and k8s mode too. (templated) :param verbose: Whether to pass the verbose flag to spark-submit process for debugging :param spark_binary: The command to use for spark submit. Some distros may use spark2-submit or spark3-submit. """
[docs] template_fields: Sequence[str] = ( "_application", "_conf", "_files", "_py_files", "_jars", "_driver_class_path", "_packages", "_exclude_packages", "_keytab", "_principal", "_proxy_user", "_name", "_application_args", "_env_vars", )
[docs] ui_color = WEB_COLORS["LIGHTORANGE"]
def __init__( self, *, application: str = "", conf: dict[str, Any] | None = None, conn_id: str = "spark_default", files: str | None = None, py_files: str | None = None, archives: str | None = None, driver_class_path: str | None = None, jars: str | None = None, java_class: str | None = None, packages: str | None = None, exclude_packages: str | None = None, repositories: str | None = None, total_executor_cores: int | None = None, executor_cores: int | None = None, executor_memory: str | None = None, driver_memory: str | None = None, keytab: str | None = None, principal: str | None = None, proxy_user: str | None = None, name: str = "arrow-spark", num_executors: int | None = None, status_poll_interval: int = 1, application_args: list[Any] | None = None, env_vars: dict[str, Any] | None = None, verbose: bool = False, spark_binary: str | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self._application = application self._conf = conf self._files = files self._py_files = py_files self._archives = archives self._driver_class_path = driver_class_path self._jars = jars self._java_class = java_class self._packages = packages self._exclude_packages = exclude_packages self._repositories = repositories self._total_executor_cores = total_executor_cores self._executor_cores = executor_cores self._executor_memory = executor_memory self._driver_memory = driver_memory self._keytab = keytab self._principal = principal self._proxy_user = proxy_user self._name = name self._num_executors = num_executors self._status_poll_interval = status_poll_interval self._application_args = application_args self._env_vars = env_vars self._verbose = verbose self._spark_binary = spark_binary self._hook: SparkSubmitHook | None = None self._conn_id = conn_id
[docs] def execute(self, context: Context) -> None: """Call the SparkSubmitHook to run the provided spark job.""" if self._hook is None: self._hook = self._get_hook() self._hook.submit(self._application)
[docs] def on_kill(self) -> None: if self._hook is None: self._hook = self._get_hook() self._hook.on_kill()
def _get_hook(self) -> SparkSubmitHook: return SparkSubmitHook( conf=self._conf, conn_id=self._conn_id, files=self._files, py_files=self._py_files, archives=self._archives, driver_class_path=self._driver_class_path, jars=self._jars, java_class=self._java_class, packages=self._packages, exclude_packages=self._exclude_packages, repositories=self._repositories, total_executor_cores=self._total_executor_cores, executor_cores=self._executor_cores, executor_memory=self._executor_memory, driver_memory=self._driver_memory, keytab=self._keytab, principal=self._principal, proxy_user=self._proxy_user, name=self._name, num_executors=self._num_executors, status_poll_interval=self._status_poll_interval, application_args=self._application_args, env_vars=self._env_vars, verbose=self._verbose, spark_binary=self._spark_binary, )

Was this entry helpful?