Source code for airflow.providers.apache.spark.hooks.spark_submit

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import contextlib
import os
import re
import subprocess
import time
from typing import Any, Iterator

from airflow.configuration import conf as airflow_conf
from airflow.exceptions import AirflowException
from airflow.hooks.base import BaseHook
from airflow.security.kerberos import renew_from_kt
from airflow.utils.log.logging_mixin import LoggingMixin

with contextlib.suppress(ImportError, NameError):
    from airflow.providers.cncf.kubernetes import kube_client

[docs]ALLOWED_SPARK_BINARIES = ["spark-submit", "spark2-submit", "spark3-submit"]
[docs]class SparkSubmitHook(BaseHook, LoggingMixin): """ Wrap the spark-submit binary to kick off a spark-submit job; requires "spark-submit" binary in the PATH. :param conf: Arbitrary Spark configuration properties :param spark_conn_id: The :ref:`spark connection id <howto/connection:spark>` as configured in Airflow administration. When an invalid connection_id is supplied, it will default to yarn. :param files: Upload additional files to the executor running the job, separated by a comma. Files will be placed in the working directory of each executor. For example, serialized objects. :param py_files: Additional python files used by the job, can be .zip, .egg or .py. :param archives: Archives that spark should unzip (and possibly tag with #ALIAS) into the application working directory. :param driver_class_path: Additional, driver-specific, classpath settings. :param jars: Submit additional jars to upload and place them in executor classpath. :param java_class: the main class of the Java application :param packages: Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths :param exclude_packages: Comma-separated list of maven coordinates of jars to exclude while resolving the dependencies provided in 'packages' :param repositories: Comma-separated list of additional remote repositories to search for the maven coordinates given with 'packages' :param total_executor_cores: (Standalone & Mesos only) Total cores for all executors (Default: all the available cores on the worker) :param executor_cores: (Standalone, YARN and Kubernetes only) Number of cores per executor (Default: 2) :param executor_memory: Memory per executor (e.g. 1000M, 2G) (Default: 1G) :param driver_memory: Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G) :param keytab: Full path to the file that contains the keytab :param principal: The name of the kerberos principal used for keytab :param proxy_user: User to impersonate when submitting the application :param name: Name of the job (default airflow-spark) :param num_executors: Number of executors to launch :param status_poll_interval: Seconds to wait between polls of driver status in cluster mode (Default: 1) :param application_args: Arguments for the application being submitted :param env_vars: Environment variables for spark-submit. It supports yarn and k8s mode too. :param verbose: Whether to pass the verbose flag to spark-submit process for debugging :param spark_binary: The command to use for spark submit. Some distros may use spark2-submit or spark3-submit. """
[docs] conn_name_attr = "conn_id"
[docs] default_conn_name = "spark_default"
[docs] conn_type = "spark"
[docs] hook_name = "Spark"
@staticmethod
[docs] def get_ui_field_behaviour() -> dict[str, Any]: """Returns custom field behaviour.""" return { "hidden_fields": ["schema", "login", "password"], "relabeling": {}, }
def __init__( self, conf: dict[str, Any] | None = None, conn_id: str = "spark_default", files: str | None = None, py_files: str | None = None, archives: str | None = None, driver_class_path: str | None = None, jars: str | None = None, java_class: str | None = None, packages: str | None = None, exclude_packages: str | None = None, repositories: str | None = None, total_executor_cores: int | None = None, executor_cores: int | None = None, executor_memory: str | None = None, driver_memory: str | None = None, keytab: str | None = None, principal: str | None = None, proxy_user: str | None = None, name: str = "default-name", num_executors: int | None = None, status_poll_interval: int = 1, application_args: list[Any] | None = None, env_vars: dict[str, Any] | None = None, verbose: bool = False, spark_binary: str | None = None, ) -> None: super().__init__() self._conf = conf or {} self._conn_id = conn_id self._files = files self._py_files = py_files self._archives = archives self._driver_class_path = driver_class_path self._jars = jars self._java_class = java_class self._packages = packages self._exclude_packages = exclude_packages self._repositories = repositories self._total_executor_cores = total_executor_cores self._executor_cores = executor_cores self._executor_memory = executor_memory self._driver_memory = driver_memory self._keytab = keytab self._principal = principal self._proxy_user = proxy_user self._name = name self._num_executors = num_executors self._status_poll_interval = status_poll_interval self._application_args = application_args self._env_vars = env_vars self._verbose = verbose self._submit_sp: Any | None = None self._yarn_application_id: str | None = None self._kubernetes_driver_pod: str | None = None self.spark_binary = spark_binary self._connection = self._resolve_connection() self._is_yarn = "yarn" in self._connection["master"] self._is_kubernetes = "k8s" in self._connection["master"] if self._is_kubernetes and kube_client is None: raise RuntimeError( f"{self._connection['master']} specified by kubernetes dependencies are not installed!" ) self._should_track_driver_status = self._resolve_should_track_driver_status() self._driver_id: str | None = None self._driver_status: str | None = None self._spark_exit_code: int | None = None self._env: dict[str, Any] | None = None def _resolve_should_track_driver_status(self) -> bool: """Check if we should track the driver status. If so, we should send subsequent spark-submit status requests after the initial spark-submit request. :return: if the driver status should be tracked """ return "spark://" in self._connection["master"] and self._connection["deploy_mode"] == "cluster" def _resolve_connection(self) -> dict[str, Any]: # Build from connection master or default to yarn if not available conn_data = { "master": "yarn", "queue": None, "deploy_mode": None, "spark_binary": self.spark_binary or "spark-submit", "namespace": None, } try: # Master can be local, yarn, spark://HOST:PORT, mesos://HOST:PORT and # k8s://https://<HOST>:<PORT> conn = self.get_connection(self._conn_id) if conn.port: conn_data["master"] = f"{conn.host}:{conn.port}" else: conn_data["master"] = conn.host # Determine optional yarn queue from the extra field extra = conn.extra_dejson conn_data["queue"] = extra.get("queue") conn_data["deploy_mode"] = extra.get("deploy-mode") if not self.spark_binary: self.spark_binary = extra.get("spark-binary", "spark-submit") if self.spark_binary is not None and self.spark_binary not in ALLOWED_SPARK_BINARIES: raise RuntimeError( f"The spark-binary extra can be on of {ALLOWED_SPARK_BINARIES} and it" f" was `{self.spark_binary}`. Please make sure your spark binary is one of the" f" allowed ones and that it is available on the PATH" ) conn_spark_home = extra.get("spark-home") if conn_spark_home: raise RuntimeError( "The `spark-home` extra is not allowed any more. Please make sure one of" f" {ALLOWED_SPARK_BINARIES} is available on the PATH, and set `spark-binary`" " if needed." ) conn_data["spark_binary"] = self.spark_binary conn_data["namespace"] = extra.get("namespace") except AirflowException: self.log.info( "Could not load connection string %s, defaulting to %s", self._conn_id, conn_data["master"] ) if "spark.kubernetes.namespace" in self._conf: conn_data["namespace"] = self._conf["spark.kubernetes.namespace"] return conn_data
[docs] def get_conn(self) -> Any: pass
def _get_spark_binary_path(self) -> list[str]: # Assume that spark-submit is present in the path to the executing user return [self._connection["spark_binary"]] def _mask_cmd(self, connection_cmd: str | list[str]) -> str: # Mask any password related fields in application args with key value pair # where key contains password (case insensitive), e.g. HivePassword='abc' connection_cmd_masked = re.sub( r"(" r"\S*?" # Match all non-whitespace characters before... r"(?:secret|password)" # ...literally a "secret" or "password" # word (not capturing them). r"\S*?" # All non-whitespace characters before either... r"(?:=|\s+)" # ...an equal sign or whitespace characters # (not capturing them). r"(['\"]?)" # An optional single or double quote. r")" # This is the end of the first capturing group. r"(?:(?!\2\s).)*" # All characters between optional quotes # (matched above); if the value is quoted, # it may contain whitespace. r"(\2)", # Optional matching quote. r"\1******\3", " ".join(connection_cmd), flags=re.I, ) return connection_cmd_masked def _build_spark_submit_command(self, application: str) -> list[str]: """ Construct the spark-submit command to execute. :param application: command to append to the spark-submit command :return: full command to be executed """ connection_cmd = self._get_spark_binary_path() # The url of the spark master connection_cmd += ["--master", self._connection["master"]] for key in self._conf: connection_cmd += ["--conf", f"{key}={str(self._conf[key])}"] if self._env_vars and (self._is_kubernetes or self._is_yarn): if self._is_yarn: tmpl = "spark.yarn.appMasterEnv.{}={}" # Allow dynamic setting of hadoop/yarn configuration environments self._env = self._env_vars else: tmpl = "spark.kubernetes.driverEnv.{}={}" for key in self._env_vars: connection_cmd += ["--conf", tmpl.format(key, str(self._env_vars[key]))] elif self._env_vars and self._connection["deploy_mode"] != "cluster": self._env = self._env_vars # Do it on Popen of the process elif self._env_vars and self._connection["deploy_mode"] == "cluster": raise AirflowException("SparkSubmitHook env_vars is not supported in standalone-cluster mode.") if self._is_kubernetes and self._connection["namespace"]: connection_cmd += [ "--conf", f"spark.kubernetes.namespace={self._connection['namespace']}", ] if self._files: connection_cmd += ["--files", self._files] if self._py_files: connection_cmd += ["--py-files", self._py_files] if self._archives: connection_cmd += ["--archives", self._archives] if self._driver_class_path: connection_cmd += ["--driver-class-path", self._driver_class_path] if self._jars: connection_cmd += ["--jars", self._jars] if self._packages: connection_cmd += ["--packages", self._packages] if self._exclude_packages: connection_cmd += ["--exclude-packages", self._exclude_packages] if self._repositories: connection_cmd += ["--repositories", self._repositories] if self._num_executors: connection_cmd += ["--num-executors", str(self._num_executors)] if self._total_executor_cores: connection_cmd += ["--total-executor-cores", str(self._total_executor_cores)] if self._executor_cores: connection_cmd += ["--executor-cores", str(self._executor_cores)] if self._executor_memory: connection_cmd += ["--executor-memory", self._executor_memory] if self._driver_memory: connection_cmd += ["--driver-memory", self._driver_memory] if self._keytab: connection_cmd += ["--keytab", self._keytab] if self._principal: connection_cmd += ["--principal", self._principal] if self._proxy_user: connection_cmd += ["--proxy-user", self._proxy_user] if self._name: connection_cmd += ["--name", self._name] if self._java_class: connection_cmd += ["--class", self._java_class] if self._verbose: connection_cmd += ["--verbose"] if self._connection["queue"]: connection_cmd += ["--queue", self._connection["queue"]] if self._connection["deploy_mode"]: connection_cmd += ["--deploy-mode", self._connection["deploy_mode"]] # The actual script to execute connection_cmd += [application] # Append any application arguments if self._application_args: connection_cmd += self._application_args self.log.info("Spark-Submit cmd: %s", self._mask_cmd(connection_cmd)) return connection_cmd def _build_track_driver_status_command(self) -> list[str]: """ Construct the command to poll the driver status. :return: full command to be executed """ curl_max_wait_time = 30 spark_host = self._connection["master"] if spark_host.endswith(":6066"): spark_host = spark_host.replace("spark://", "http://") connection_cmd = [ "/usr/bin/curl", "--max-time", str(curl_max_wait_time), f"{spark_host}/v1/submissions/status/{self._driver_id}", ] self.log.info(connection_cmd) # The driver id so we can poll for its status if not self._driver_id: raise AirflowException( "Invalid status: attempted to poll driver status but no driver id is known. Giving up." ) else: connection_cmd = self._get_spark_binary_path() # The url to the spark master connection_cmd += ["--master", self._connection["master"]] # The driver id so we can poll for its status if self._driver_id: connection_cmd += ["--status", self._driver_id] else: raise AirflowException( "Invalid status: attempted to poll driver status but no driver id is known. Giving up." ) self.log.debug("Poll driver status cmd: %s", connection_cmd) return connection_cmd
[docs] def submit(self, application: str = "", **kwargs: Any) -> None: """ Remote Popen to execute the spark-submit job. :param application: Submitted application, jar or py file :param kwargs: extra arguments to Popen (see subprocess.Popen) """ spark_submit_cmd = self._build_spark_submit_command(application) if self._env: env = os.environ.copy() env.update(self._env) kwargs["env"] = env self._submit_sp = subprocess.Popen( spark_submit_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=-1, universal_newlines=True, **kwargs, ) self._process_spark_submit_log(iter(self._submit_sp.stdout)) # type: ignore returncode = self._submit_sp.wait() # Check spark-submit return code. In Kubernetes mode, also check the value # of exit code in the log, as it may differ. if returncode or (self._is_kubernetes and self._spark_exit_code != 0): if self._is_kubernetes: raise AirflowException( f"Cannot execute: {self._mask_cmd(spark_submit_cmd)}. Error code is: {returncode}. " f"Kubernetes spark exit code is: {self._spark_exit_code}" ) else: raise AirflowException( f"Cannot execute: {self._mask_cmd(spark_submit_cmd)}. Error code is: {returncode}." ) self.log.debug("Should track driver: %s", self._should_track_driver_status) # We want the Airflow job to wait until the Spark driver is finished if self._should_track_driver_status: if self._driver_id is None: raise AirflowException( "No driver id is known: something went wrong when executing the spark submit command" ) # We start with the SUBMITTED status as initial status self._driver_status = "SUBMITTED" # Start tracking the driver status (blocking function) self._start_driver_status_tracking() if self._driver_status != "FINISHED": raise AirflowException( f"ERROR : Driver {self._driver_id} badly exited with status {self._driver_status}" )
def _process_spark_submit_log(self, itr: Iterator[Any]) -> None: """ Processes the log files and extracts useful information out of it. If the deploy-mode is 'client', log the output of the submit command as those are the output logs of the Spark worker directly. Remark: If the driver needs to be tracked for its status, the log-level of the spark deploy needs to be at least INFO (log4j.logger.org.apache.spark.deploy=INFO) :param itr: An iterator which iterates over the input of the subprocess """ # Consume the iterator for line in itr: line = line.strip() # If we run yarn cluster mode, we want to extract the application id from # the logs so we can kill the application when we stop it unexpectedly if self._is_yarn and self._connection["deploy_mode"] == "cluster": match = re.search("(application[0-9_]+)", line) if match: self._yarn_application_id = match.groups()[0] self.log.info("Identified spark driver id: %s", self._yarn_application_id) # If we run Kubernetes cluster mode, we want to extract the driver pod id # from the logs so we can kill the application when we stop it unexpectedly elif self._is_kubernetes: match = re.search(r"\s*pod name: ((.+?)-([a-z0-9]+)-driver)", line) if match: self._kubernetes_driver_pod = match.groups()[0] self.log.info("Identified spark driver pod: %s", self._kubernetes_driver_pod) # Store the Spark Exit code match_exit_code = re.search(r"\s*[eE]xit code: (\d+)", line) if match_exit_code: self._spark_exit_code = int(match_exit_code.groups()[0]) # if we run in standalone cluster mode and we want to track the driver status # we need to extract the driver id from the logs. This allows us to poll for # the status using the driver id. Also, we can kill the driver when needed. elif self._should_track_driver_status and not self._driver_id: match_driver_id = re.search(r"(driver-[0-9\-]+)", line) if match_driver_id: self._driver_id = match_driver_id.groups()[0] self.log.info("identified spark driver id: %s", self._driver_id) self.log.info(line) def _process_spark_status_log(self, itr: Iterator[Any]) -> None: """ Parses the logs of the spark driver status query process. :param itr: An iterator which iterates over the input of the subprocess """ driver_found = False valid_response = False # Consume the iterator for line in itr: line = line.strip() # A valid Spark status response should contain a submissionId if "submissionId" in line: valid_response = True # Check if the log line is about the driver status and extract the status. if "driverState" in line: self._driver_status = line.split(" : ")[1].replace(",", "").replace('"', "").strip() driver_found = True self.log.debug("spark driver status log: %s", line) if valid_response and not driver_found: self._driver_status = "UNKNOWN" def _start_driver_status_tracking(self) -> None: """ Polls the driver based on self._driver_id to get the status. Finish successfully when the status is FINISHED. Finish failed when the status is ERROR/UNKNOWN/KILLED/FAILED. Possible status: SUBMITTED Submitted but not yet scheduled on a worker RUNNING Has been allocated to a worker to run FINISHED Previously ran and exited cleanly RELAUNCHING Exited non-zero or due to worker failure, but has not yet started running again UNKNOWN The status of the driver is temporarily not known due to master failure recovery KILLED A user manually killed this driver FAILED The driver exited non-zero and was not supervised ERROR Unable to run or restart due to an unrecoverable error (e.g. missing jar file) """ # When your Spark Standalone cluster is not performing well # due to misconfiguration or heavy loads. # it is possible that the polling request will timeout. # Therefore we use a simple retry mechanism. missed_job_status_reports = 0 max_missed_job_status_reports = 10 # Keep polling as long as the driver is processing while self._driver_status not in ["FINISHED", "UNKNOWN", "KILLED", "FAILED", "ERROR"]: # Sleep for n seconds as we do not want to spam the cluster time.sleep(self._status_poll_interval) self.log.debug("polling status of spark driver with id %s", self._driver_id) poll_drive_status_cmd = self._build_track_driver_status_command() status_process: Any = subprocess.Popen( poll_drive_status_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=-1, universal_newlines=True, ) self._process_spark_status_log(iter(status_process.stdout)) returncode = status_process.wait() if returncode: if missed_job_status_reports < max_missed_job_status_reports: missed_job_status_reports += 1 else: raise AirflowException( f"Failed to poll for the driver status {max_missed_job_status_reports} times: " f"returncode = {returncode}" ) def _build_spark_driver_kill_command(self) -> list[str]: """ Construct the spark-submit command to kill a driver. :return: full command to kill a driver """ # Assume that spark-submit is present in the path to the executing user connection_cmd = [self._connection["spark_binary"]] # The url to the spark master connection_cmd += ["--master", self._connection["master"]] # The actual kill command if self._driver_id: connection_cmd += ["--kill", self._driver_id] self.log.debug("Spark-Kill cmd: %s", connection_cmd) return connection_cmd
[docs] def on_kill(self) -> None: """Kill Spark submit command.""" self.log.debug("Kill Command is being called") if self._should_track_driver_status and self._driver_id: self.log.info("Killing driver %s on cluster", self._driver_id) kill_cmd = self._build_spark_driver_kill_command() with subprocess.Popen(kill_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as driver_kill: self.log.info( "Spark driver %s killed with return code: %s", self._driver_id, driver_kill.wait() ) if self._submit_sp and self._submit_sp.poll() is None: self.log.info("Sending kill signal to %s", self._connection["spark_binary"]) self._submit_sp.kill() if self._yarn_application_id: kill_cmd = f"yarn application -kill {self._yarn_application_id}".split() env = {**os.environ, **(self._env or {})} if self._keytab is not None and self._principal is not None: # we are ignoring renewal failures from renew_from_kt # here as the failure could just be due to a non-renewable ticket, # we still attempt to kill the yarn application renew_from_kt(self._principal, self._keytab, exit_on_fail=False) env = os.environ.copy() ccacche = airflow_conf.get_mandatory_value("kerberos", "ccache") env["KRB5CCNAME"] = ccacche with subprocess.Popen( kill_cmd, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) as yarn_kill: self.log.info("YARN app killed with return code: %s", yarn_kill.wait()) if self._kubernetes_driver_pod: self.log.info("Killing pod %s on Kubernetes", self._kubernetes_driver_pod) # Currently only instantiate Kubernetes client for killing a spark pod. try: import kubernetes client = kube_client.get_kube_client() api_response = client.delete_namespaced_pod( self._kubernetes_driver_pod, self._connection["namespace"], body=kubernetes.client.V1DeleteOptions(), pretty=True, ) self.log.info("Spark on K8s killed with response: %s", api_response) except kube_client.ApiException: self.log.exception("Exception when attempting to kill Spark on K8s")

Was this entry helpful?