Source code for airflow.providers.apache.spark.hooks.spark_jdbc_script

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
import argparse
from typing import Any, List, Optional

from pyspark.sql import SparkSession

[docs]SPARK_WRITE_TO_JDBC: str = "spark_to_jdbc"
[docs]SPARK_READ_FROM_JDBC: str = "jdbc_to_spark"
[docs]def set_common_options( spark_source: Any, url: str = 'localhost:5432', jdbc_table: str = 'default.default', user: str = 'root', password: str = 'root', driver: str = 'driver', ) -> Any: """ Get Spark source from JDBC connection :param spark_source: Spark source, here is Spark reader or writer :param url: JDBC resource url :param jdbc_table: JDBC resource table name :param user: JDBC resource user name :param password: JDBC resource password :param driver: JDBC resource driver """ spark_source = ( spark_source.format('jdbc') .option('url', url) .option('dbtable', jdbc_table) .option('user', user) .option('password', password) .option('driver', driver) ) return spark_source
[docs]def spark_write_to_jdbc( spark_session: SparkSession, url: str, user: str, password: str, metastore_table: str, jdbc_table: str, driver: Any, truncate: bool, save_mode: str, batch_size: int, num_partitions: int, create_table_column_types: str, ) -> None: """Transfer data from Spark to JDBC source""" writer = spark_session.table(metastore_table).write # first set common options writer = set_common_options(writer, url, jdbc_table, user, password, driver) # now set write-specific options if truncate: writer = writer.option('truncate', truncate) if batch_size: writer = writer.option('batchsize', batch_size) if num_partitions: writer = writer.option('numPartitions', num_partitions) if create_table_column_types: writer = writer.option("createTableColumnTypes", create_table_column_types) writer.save(mode=save_mode)
[docs]def spark_read_from_jdbc( spark_session: SparkSession, url: str, user: str, password: str, metastore_table: str, jdbc_table: str, driver: Any, save_mode: str, save_format: str, fetch_size: int, num_partitions: int, partition_column: str, lower_bound: str, upper_bound: str, ) -> None: """Transfer data from JDBC source to Spark""" # first set common options reader = set_common_options(spark_session.read, url, jdbc_table, user, password, driver) # now set specific read options if fetch_size: reader = reader.option('fetchsize', fetch_size) if num_partitions: reader = reader.option('numPartitions', num_partitions) if partition_column and lower_bound and upper_bound: reader = ( reader.option('partitionColumn', partition_column) .option('lowerBound', lower_bound) .option('upperBound', upper_bound) ) reader.load().write.saveAsTable(metastore_table, format=save_format, mode=save_mode)
def _parse_arguments(args: Optional[List[str]] = None) -> Any: parser = argparse.ArgumentParser(description='Spark-JDBC') parser.add_argument('-cmdType', dest='cmd_type', action='store') parser.add_argument('-url', dest='url', action='store') parser.add_argument('-user', dest='user', action='store') parser.add_argument('-password', dest='password', action='store') parser.add_argument('-metastoreTable', dest='metastore_table', action='store') parser.add_argument('-jdbcTable', dest='jdbc_table', action='store') parser.add_argument('-jdbcDriver', dest='jdbc_driver', action='store') parser.add_argument('-jdbcTruncate', dest='truncate', action='store') parser.add_argument('-saveMode', dest='save_mode', action='store') parser.add_argument('-saveFormat', dest='save_format', action='store') parser.add_argument('-batchsize', dest='batch_size', action='store') parser.add_argument('-fetchsize', dest='fetch_size', action='store') parser.add_argument('-name', dest='name', action='store') parser.add_argument('-numPartitions', dest='num_partitions', action='store') parser.add_argument('-partitionColumn', dest='partition_column', action='store') parser.add_argument('-lowerBound', dest='lower_bound', action='store') parser.add_argument('-upperBound', dest='upper_bound', action='store') parser.add_argument('-createTableColumnTypes', dest='create_table_column_types', action='store') return parser.parse_args(args=args) def _create_spark_session(arguments: Any) -> SparkSession: return SparkSession.builder.appName(arguments.name).enableHiveSupport().getOrCreate() def _run_spark(arguments: Any) -> None: # Disable dynamic allocation by default to allow num_executors to take effect. spark = _create_spark_session(arguments) if arguments.cmd_type == SPARK_WRITE_TO_JDBC: spark_write_to_jdbc( spark, arguments.url, arguments.user, arguments.password, arguments.metastore_table, arguments.jdbc_table, arguments.jdbc_driver, arguments.truncate, arguments.save_mode, arguments.batch_size, arguments.num_partitions, arguments.create_table_column_types, ) elif arguments.cmd_type == SPARK_READ_FROM_JDBC: spark_read_from_jdbc( spark, arguments.url, arguments.user, arguments.password, arguments.metastore_table, arguments.jdbc_table, arguments.jdbc_driver, arguments.save_mode, arguments.save_format, arguments.fetch_size, arguments.num_partitions, arguments.partition_column, arguments.lower_bound, arguments.upper_bound, ) if __name__ == "__main__": # pragma: no cover _run_spark(arguments=_parse_arguments())

Was this entry helpful?