airflow.providers.apache.livy.operators.livy

This module contains the Apache Livy operator.

Module Contents

Classes

LivyOperator

This operator wraps the Apache Livy batch REST API, allowing to submit a Spark

class airflow.providers.apache.livy.operators.livy.LivyOperator(*, file, class_name=None, args=None, conf=None, jars=None, py_files=None, files=None, driver_memory=None, driver_cores=None, executor_memory=None, executor_cores=None, num_executors=None, archives=None, queue=None, name=None, proxy_user=None, livy_conn_id='livy_default', polling_interval=0, extra_options=None, extra_headers=None, retry_args=None, **kwargs)[source]

Bases: airflow.models.BaseOperator

This operator wraps the Apache Livy batch REST API, allowing to submit a Spark application to the underlying cluster.

Parameters
  • file (str) – path of the file containing the application to execute (required).

  • class_name (Optional[str]) – name of the application Java/Spark main class.

  • args (Optional[Sequence[Union[str, int, float]]]) – application command line arguments.

  • jars (Optional[Sequence[str]]) – jars to be used in this sessions.

  • py_files (Optional[Sequence[str]]) – python files to be used in this session.

  • files (Optional[Sequence[str]]) – files to be used in this session.

  • driver_memory (Optional[str]) – amount of memory to use for the driver process.

  • driver_cores (Optional[Union[int, str]]) – number of cores to use for the driver process.

  • executor_memory (Optional[str]) – amount of memory to use per executor process.

  • executor_cores (Optional[Union[int, str]]) – number of cores to use for each executor.

  • num_executors (Optional[Union[int, str]]) – number of executors to launch for this session.

  • archives (Optional[Sequence[str]]) – archives to be used in this session.

  • queue (Optional[str]) – name of the YARN queue to which the application is submitted.

  • name (Optional[str]) – name of this session.

  • conf (Optional[Dict[Any, Any]]) – Spark configuration properties.

  • proxy_user (Optional[str]) – user to impersonate when running the job.

  • livy_conn_id (str) – reference to a pre-defined Livy Connection.

  • polling_interval (int) – time in seconds between polling for job completion. Don’t poll for values >=0

  • extra_options (Optional[Dict[str, Any]]) – A dictionary of options, where key is string and value depends on the option that’s being modified.

  • extra_headers (Optional[Dict[str, Any]]) – A dictionary of headers passed to the HTTP request to livy.

  • retry_args (Optional[Dict[str, Any]]) – Arguments which define the retry behaviour. See Tenacity documentation at https://github.com/jd/tenacity

template_fields :Sequence[str] = ['spark_params'][source]
get_hook(self)[source]

Get valid hook.

Returns

hook

Return type

LivyHook

execute(self, context)[source]

This is the main method to derive when creating an operator. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

poll_for_termination(self, batch_id)[source]

Pool Livy for batch termination.

Parameters

batch_id (Union[int, str]) – id of the batch session to monitor.

on_kill(self)[source]

Override this method to cleanup subprocesses when a task instance gets killed. Any use of the threading, subprocess or multiprocessing module within an operator needs to be cleaned up or it will leave ghost processes behind.

kill(self)[source]

Delete the current batch session.

Was this entry helpful?