Source code for airflow.providers.apache.hive.operators.hive_stats

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
from typing import TYPE_CHECKING, Any, Callable, Sequence

from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.apache.hive.hooks.hive import HiveMetastoreHook
from airflow.providers.mysql.hooks.mysql import MySqlHook
from airflow.providers.presto.hooks.presto import PrestoHook

    from airflow.utils.context import Context

[docs]class HiveStatsCollectionOperator(BaseOperator): """Gather partition statistics and insert them into MySQL. Statistics are gathered with a dynamically generated Presto query and inserted with this format. Stats overwrite themselves if you rerun the same date/partition. .. code-block:: sql CREATE TABLE hive_stats ( ds VARCHAR(16), table_name VARCHAR(500), metric VARCHAR(200), value BIGINT ); :param metastore_conn_id: Reference to the :ref:`Hive Metastore connection id <howto/connection:hive_metastore>`. :param table: the source table, in the format ``database.table_name``. (templated) :param partition: the source partition. (templated) :param extra_exprs: dict of expression to run against the table where keys are metric names and values are Presto compatible expressions :param excluded_columns: list of columns to exclude, consider excluding blobs, large json columns, ... :param assignment_func: a function that receives a column name and a type, and returns a dict of metric names and an Presto expressions. If None is returned, the global defaults are applied. If an empty dictionary is returned, no stats are computed for that column. """
[docs] template_fields: Sequence[str] = ("table", "partition", "ds", "dttm")
[docs] ui_color = "#aff7a6"
def __init__( self, *, table: str, partition: Any, extra_exprs: dict[str, Any] | None = None, excluded_columns: list[str] | None = None, assignment_func: Callable[[str, str], dict[Any, Any] | None] | None = None, metastore_conn_id: str = "metastore_default", presto_conn_id: str = "presto_default", mysql_conn_id: str = "airflow_db", ds: str = "{{ ds }}", dttm: str = "{{ logical_date.isoformat() }}", **kwargs: Any, ) -> None: super().__init__(**kwargs) self.table = table self.partition = partition self.extra_exprs = extra_exprs or {} self.excluded_columns: list[str] = excluded_columns or [] self.metastore_conn_id = metastore_conn_id self.presto_conn_id = presto_conn_id self.mysql_conn_id = mysql_conn_id self.assignment_func = assignment_func self.ds = ds self.dttm = dttm
[docs] def get_default_exprs(self, col: str, col_type: str) -> dict[Any, Any]: """Get default expressions.""" if col in self.excluded_columns: return {} exp = {(col, "non_null"): f"COUNT({col})"} if col_type in {"double", "int", "bigint", "float"}: exp[(col, "sum")] = f"SUM({col})" exp[(col, "min")] = f"MIN({col})" exp[(col, "max")] = f"MAX({col})" exp[(col, "avg")] = f"AVG({col})" elif col_type == "boolean": exp[(col, "true")] = f"SUM(CASE WHEN {col} THEN 1 ELSE 0 END)" exp[(col, "false")] = f"SUM(CASE WHEN NOT {col} THEN 1 ELSE 0 END)" elif col_type == "string": exp[(col, "len")] = f"SUM(CAST(LENGTH({col}) AS BIGINT))" exp[(col, "approx_distinct")] = f"APPROX_DISTINCT({col})" return exp
[docs] def execute(self, context: Context) -> None: metastore = HiveMetastoreHook(metastore_conn_id=self.metastore_conn_id) table = metastore.get_table(table_name=self.table) field_types = { col.type for col in} exprs: Any = {("", "count"): "COUNT(*)"} for col, col_type in list(field_types.items()): if self.assignment_func: assign_exprs = self.assignment_func(col, col_type) if assign_exprs is None: assign_exprs = self.get_default_exprs(col, col_type) else: assign_exprs = self.get_default_exprs(col, col_type) exprs.update(assign_exprs) exprs.update(self.extra_exprs) exprs_str = ",\n ".join(f"{v} AS {k[0]}__{k[1]}" for k, v in exprs.items()) where_clause_ = [f"{k} = '{v}'" for k, v in self.partition.items()] where_clause = " AND\n ".join(where_clause_) sql = f"SELECT {exprs_str} FROM {self.table} WHERE {where_clause};" presto = PrestoHook(presto_conn_id=self.presto_conn_id)"Executing SQL check: %s", sql) row = presto.get_first(sql)"Record: %s", row) if not row: raise AirflowException("The query returned None") part_json = json.dumps(self.partition, sort_keys=True)"Deleting rows from previous runs if they exist") mysql = MySqlHook(self.mysql_conn_id) sql = f""" SELECT 1 FROM hive_stats WHERE table_name='{self.table}' AND partition_repr='{part_json}' AND dttm='{self.dttm}' LIMIT 1; """ if mysql.get_records(sql): sql = f""" DELETE FROM hive_stats WHERE table_name='{self.table}' AND partition_repr='{part_json}' AND dttm='{self.dttm}'; """"Pivoting and loading cells into the Airflow db") rows = [ (self.ds, self.dttm, self.table, part_json) + (r[0][0], r[0][1], r[1]) for r in zip(exprs, row) ] mysql.insert_rows( table="hive_stats", rows=rows, target_fields=[ "ds", "dttm", "table_name", "partition_repr", "col", "metric", "value", ], )

Was this entry helpful?