Source code for tests.system.apache.hive.example_twitter_dag
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
This is an example dag for managing twitter data.
"""
from __future__ import annotations
import os
from datetime import date, datetime, timedelta
from airflow import DAG
from airflow.decorators import task
from airflow.providers.apache.hive.operators.hive import HiveOperator
from airflow.providers.standard.operators.bash import BashOperator
# --------------------------------------------------------------------------------
# Caveat: This Dag will not run because of missing scripts.
# The purpose of this is to give you a sample of a real world example DAG!
# --------------------------------------------------------------------------------
# --------------------------------------------------------------------------------
# Load The Dependencies
# --------------------------------------------------------------------------------
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_twitter_dag"
@task
@task
@task
@task
[docs]def transfer_to_db():
"""
This is a placeholder to extract summary from Hive data and store it to MySQL.
"""
with DAG(
dag_id=DAG_ID,
default_args={
"owner": "Ekhtiar",
"retries": 1,
},
schedule="@daily",
start_date=datetime(2021, 1, 1),
tags=["example"],
catchup=False,
) as dag:
clean = clean_tweets()
analyze = analyze_tweets()
hive_to_mysql = transfer_to_db()
fetch >> clean >> analyze
# --------------------------------------------------------------------------------
# The following tasks are generated using for loop. The first task puts the eight
# csv files to HDFS. The second task loads these files from HDFS to respected Hive
# tables. These two for loops could be combined into one loop. However, in most cases,
# you will be running different analysis on your incoming and outgoing tweets,
# and hence they are kept separated in this example.
# --------------------------------------------------------------------------------
from_channels = ["fromTwitter_A", "fromTwitter_B", "fromTwitter_C", "fromTwitter_D"]
to_channels = ["toTwitter_A", "toTwitter_B", "toTwitter_C", "toTwitter_D"]
yesterday = date.today() - timedelta(days=1)
dt = yesterday.strftime("%Y-%m-%d")
# define where you want to store the tweets csv file in your local directory
local_dir = "/tmp/"
# define the location where you want to store in HDFS
hdfs_dir = " /tmp/"
for channel in to_channels:
file_name = f"to_{channel}_{dt}.csv"
load_to_hdfs = BashOperator(
task_id=f"put_{channel}_to_hdfs",
bash_command=(
f"HADOOP_USER_NAME=hdfs hadoop fs -put -f {local_dir}{file_name}{hdfs_dir}{channel}/"
),
)
# [START create_hive]
load_to_hive = HiveOperator(
task_id=f"load_{channel}_to_hive",
hql=(
f"LOAD DATA INPATH '{hdfs_dir}{channel}/{file_name}'"
f"INTO TABLE {channel}"
f"PARTITION(dt='{dt}')"
),
)
# [END create_hive]
analyze >> load_to_hdfs >> load_to_hive >> hive_to_mysql
for channel in from_channels:
file_name = f"from_{channel}_{dt}.csv"
load_to_hdfs = BashOperator(
task_id=f"put_{channel}_to_hdfs",
bash_command=(
f"HADOOP_USER_NAME=hdfs hadoop fs -put -f {local_dir}{file_name}{hdfs_dir}{channel}/"
),
)
load_to_hive = HiveOperator(
task_id=f"load_{channel}_to_hive",
hql=(
f"LOAD DATA INPATH '{hdfs_dir}{channel}/{file_name}' "
f"INTO TABLE {channel} "
f"PARTITION(dt='{dt}')"
),
)
analyze >> load_to_hdfs >> load_to_hive >> hive_to_mysql
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)