Source code for airflow.providers.apache.hive.transfers.vertica_to_hive
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License."""This module contains an operator to move data from Vertica to Hive."""fromcollectionsimportOrderedDictfromtempfileimportNamedTemporaryFilefromtypingimportTYPE_CHECKING,Any,Dict,Optional,Sequenceimportunicodecsvascsvfromairflow.modelsimportBaseOperatorfromairflow.providers.apache.hive.hooks.hiveimportHiveCliHookfromairflow.providers.vertica.hooks.verticaimportVerticaHookifTYPE_CHECKING:fromairflow.utils.contextimportContext
[docs]classVerticaToHiveOperator(BaseOperator):""" Moves data from Vertica to Hive. The operator runs your query against Vertica, stores the file locally before loading it into a Hive table. If the ``create`` or ``recreate`` arguments are set to ``True``, a ``CREATE TABLE`` and ``DROP TABLE`` statements are generated. Hive data types are inferred from the cursor's metadata. Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the table gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param sql: SQL query to execute against the Vertica database. (templated) :param hive_table: target Hive table, use dot notation to target a specific database. (templated) :param create: whether to create the table if it doesn't exist :param recreate: whether to drop and recreate the table at every execution :param partition: target partition as a dict of partition columns and values. (templated) :param delimiter: field delimiter in the file :param vertica_conn_id: source Vertica connection :param hive_cli_conn_id: Reference to the :ref:`Hive CLI connection id <howto/connection:hive_cli>`. """
[docs]deftype_map(cls,vertica_type):""" Vertica-python datatype.py does not provide the full type mapping access. Manual hack. Reference: https://github.com/uber/vertica-python/blob/master/vertica_python/vertica/column.py """type_map={5:'BOOLEAN',6:'INT',7:'FLOAT',8:'STRING',9:'STRING',16:'FLOAT',}returntype_map.get(vertica_type,'STRING')
[docs]defexecute(self,context:'Context'):hive=HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)vertica=VerticaHook(vertica_conn_id=self.vertica_conn_id)self.log.info("Dumping Vertica query results to local file")conn=vertica.get_conn()cursor=conn.cursor()cursor.execute(self.sql)withNamedTemporaryFile("w")asf:csv_writer=csv.writer(f,delimiter=self.delimiter,encoding='utf-8')field_dict=OrderedDict()forcol_count,fieldinenumerate(cursor.description,start=1):col_position=f"Column{col_count}"field_dict[col_positioniffield[0]==''elsefield[0]]=self.type_map(field[1])csv_writer.writerows(cursor.iterate())f.flush()cursor.close()conn.close()self.log.info("Loading file into Hive")hive.load_file(f.name,self.hive_table,field_dict=field_dict,create=self.create,partition=self.partition,delimiter=self.delimiter,recreate=self.recreate,