Source code for airflow.providers.apache.flink.sensors.flink_kubernetes

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Sequence

from kubernetes import client

from airflow.exceptions import AirflowException
from airflow.providers.cncf.kubernetes.hooks.kubernetes import KubernetesHook
from airflow.sensors.base import BaseSensorOperator

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class FlinkKubernetesSensor(BaseSensorOperator): """ Checks flinkDeployment object in kubernetes cluster. .. seealso:: For more detail about Flink Deployment Object have a look at the reference: https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/docs/custom-resource/reference/#flinkdeployment :param application_name: flink Application resource name :param namespace: the kubernetes namespace where the flinkDeployment reside in :param kubernetes_conn_id: The :ref:`kubernetes connection<howto/connection:kubernetes>` to Kubernetes cluster :param attach_log: determines whether logs for driver pod should be appended to the sensor log :param api_group: kubernetes api group of flinkDeployment :param api_version: kubernetes api version of flinkDeployment :param plural: kubernetes api custom object plural """
[docs] template_fields: Sequence[str] = ("application_name", "namespace")
[docs] FAILURE_STATES = ("MISSING", "ERROR")
[docs] SUCCESS_STATES = ("READY",)
def __init__( self, *, application_name: str, attach_log: bool = False, namespace: str | None = None, kubernetes_conn_id: str = "kubernetes_default", api_group: str = "flink.apache.org", api_version: str = "v1beta1", plural: str = "flinkdeployments", **kwargs, ) -> None: super().__init__(**kwargs) self.application_name = application_name self.attach_log = attach_log self.namespace = namespace self.kubernetes_conn_id = kubernetes_conn_id self.hook = KubernetesHook(conn_id=self.kubernetes_conn_id) self.api_group = api_group self.api_version = api_version self.plural = plural def _log_driver(self, application_state: str, response: dict) -> None: log_method = self.log.error if application_state in self.FAILURE_STATES else self.log.info if not self.attach_log: return status_info = response["status"] if "jobStatus" in status_info: job_status = status_info["jobStatus"] job_state = job_status["state"] if "state" in job_status else "StateFetchError" self.log.info("Flink Job status is %s", job_state) else: return task_manager_labels = status_info["taskManager"]["labelSelector"] all_pods = self.hook.get_namespaced_pod_list( namespace="default", watch=False, label_selector=task_manager_labels ) namespace = response["metadata"]["namespace"] for task_manager in all_pods.items: task_manager_pod_name = task_manager.metadata.name self.log.info("Starting logging of task manager pod %s ", task_manager_pod_name) try: log = "" for line in self.hook.get_pod_logs(task_manager_pod_name, namespace=namespace): log += line.decode() log_method(log) except client.rest.ApiException as e: self.log.warning( "Could not read logs for pod %s. It may have been disposed.\n" "Make sure timeToLiveSeconds is set on your flinkDeployment spec.\n" "underlying exception: %s", task_manager_pod_name, e, )
[docs] def poke(self, context: Context) -> bool: self.log.info("Poking: %s", self.application_name) response = self.hook.get_custom_object( group=self.api_group, version=self.api_version, plural=self.plural, name=self.application_name, namespace=self.namespace, ) try: application_state = response["status"]["jobManagerDeploymentStatus"] except KeyError: return False if self.attach_log and application_state in self.FAILURE_STATES + self.SUCCESS_STATES: self._log_driver(application_state, response) if application_state in self.FAILURE_STATES: message = f"Flink application failed with state: {application_state}" raise AirflowException(message) elif application_state in self.SUCCESS_STATES: self.log.info("Flink application ended successfully") return True else: self.log.info("Flink application is still in state: %s", application_state) return False

Was this entry helpful?