Source code for tests.system.providers.amazon.aws.example_emr_serverless

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from datetime import datetime

import boto3

from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.amazon.aws.operators.emr import (
    EmrServerlessCreateApplicationOperator,
    EmrServerlessDeleteApplicationOperator,
    EmrServerlessStartJobOperator,
    EmrServerlessStopApplicationOperator,
)
from airflow.providers.amazon.aws.operators.s3 import S3CreateBucketOperator, S3DeleteBucketOperator
from airflow.providers.amazon.aws.sensors.emr import EmrServerlessApplicationSensor, EmrServerlessJobSensor
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import ENV_ID_KEY, SystemTestContextBuilder

[docs]DAG_ID = "example_emr_serverless"
# Externally fetched variables:
[docs]ROLE_ARN_KEY = "ROLE_ARN"
[docs]sys_test_context_task = SystemTestContextBuilder().add_variable(ROLE_ARN_KEY).build()
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), tags=["example"], catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context[ENV_ID_KEY] role_arn = test_context[ROLE_ARN_KEY] bucket_name = f"{env_id}-emr-serverless-bucket" region = boto3.session.Session().region_name entryPoint = f"s3://{region}.elasticmapreduce/emr-containers/samples/wordcount/scripts/wordcount.py" create_s3_bucket = S3CreateBucketOperator(task_id="create_s3_bucket", bucket_name=bucket_name) SPARK_JOB_DRIVER = { "sparkSubmit": { "entryPoint": entryPoint, "entryPointArguments": [f"s3://{bucket_name}/output"], "sparkSubmitParameters": "--conf spark.executor.cores=1 --conf spark.executor.memory=4g\ --conf spark.driver.cores=1 --conf spark.driver.memory=4g --conf spark.executor.instances=1", } } SPARK_CONFIGURATION_OVERRIDES = { "monitoringConfiguration": {"s3MonitoringConfiguration": {"logUri": f"s3://{bucket_name}/logs"}} } # [START howto_operator_emr_serverless_create_application] emr_serverless_app = EmrServerlessCreateApplicationOperator( task_id="create_emr_serverless_task", release_label="emr-6.6.0", job_type="SPARK", config={"name": "new_application"}, ) # [END howto_operator_emr_serverless_create_application] # EmrServerlessCreateApplicationOperator waits by default, setting as False to test the Sensor below. emr_serverless_app.wait_for_completion = False emr_serverless_app_id = emr_serverless_app.output # [START howto_sensor_emr_serverless_application] wait_for_app_creation = EmrServerlessApplicationSensor( task_id="wait_for_app_creation", application_id=emr_serverless_app_id, ) # [END howto_sensor_emr_serverless_application] wait_for_app_creation.poke_interval = 1 # [START howto_operator_emr_serverless_start_job] start_job = EmrServerlessStartJobOperator( task_id="start_emr_serverless_job", application_id=emr_serverless_app_id, execution_role_arn=role_arn, job_driver=SPARK_JOB_DRIVER, configuration_overrides=SPARK_CONFIGURATION_OVERRIDES, ) # [END howto_operator_emr_serverless_start_job] start_job.wait_for_completion = False # [START howto_sensor_emr_serverless_job] wait_for_job = EmrServerlessJobSensor( task_id="wait_for_job", application_id=emr_serverless_app_id, job_run_id=start_job.output, # the default is to wait for job completion, here we just wait for the job to be running. target_states={"RUNNING"}, ) # [END howto_sensor_emr_serverless_job] wait_for_job.poke_interval = 10 # [START howto_operator_emr_serverless_stop_application] stop_app = EmrServerlessStopApplicationOperator( task_id="stop_application", application_id=emr_serverless_app_id, force_stop=True, ) # [END howto_operator_emr_serverless_stop_application] stop_app.waiter_check_interval_seconds = 1 # [START howto_operator_emr_serverless_delete_application] delete_app = EmrServerlessDeleteApplicationOperator( task_id="delete_application", application_id=emr_serverless_app_id, ) # [END howto_operator_emr_serverless_delete_application] delete_app.waiter_check_interval_seconds = 1 delete_app.trigger_rule = TriggerRule.ALL_DONE delete_s3_bucket = S3DeleteBucketOperator( task_id="delete_s3_bucket", bucket_name=bucket_name, force_delete=True, trigger_rule=TriggerRule.ALL_DONE, ) chain( # TEST SETUP test_context, create_s3_bucket, # TEST BODY emr_serverless_app, wait_for_app_creation, start_job, wait_for_job, stop_app, # TEST TEARDOWN delete_app, delete_s3_bucket, ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?