# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import asyncio
from collections import Counter
from enum import IntEnum
from functools import cached_property
from typing import Any, AsyncIterator
from botocore.exceptions import WaiterError
from airflow import AirflowException
from airflow.providers.amazon.aws.hooks.sagemaker import SageMakerHook
from airflow.providers.amazon.aws.utils.waiter_with_logging import async_wait
from airflow.triggers.base import BaseTrigger, TriggerEvent
[docs]class SageMakerTrigger(BaseTrigger):
"""
SageMakerTrigger is fired as deferred class with params to run the task in triggerer.
:param job_name: name of the job to check status
:param job_type: Type of the sagemaker job whether it is Transform or Training
:param poke_interval: polling period in seconds to check for the status
:param max_attempts: Number of times to poll for query state before returning the current state,
defaults to None.
:param aws_conn_id: AWS connection ID for sagemaker
"""
def __init__(
self,
job_name: str,
job_type: str,
poke_interval: int = 30,
max_attempts: int = 480,
aws_conn_id: str = "aws_default",
):
super().__init__()
self.job_name = job_name
self.job_type = job_type
self.poke_interval = poke_interval
self.max_attempts = max_attempts
self.aws_conn_id = aws_conn_id
[docs] def serialize(self) -> tuple[str, dict[str, Any]]:
"""Serializes SagemakerTrigger arguments and classpath."""
return (
"airflow.providers.amazon.aws.triggers.sagemaker.SageMakerTrigger",
{
"job_name": self.job_name,
"job_type": self.job_type,
"poke_interval": self.poke_interval,
"max_attempts": self.max_attempts,
"aws_conn_id": self.aws_conn_id,
},
)
@cached_property
[docs] def hook(self) -> SageMakerHook:
return SageMakerHook(aws_conn_id=self.aws_conn_id)
@staticmethod
def _get_job_type_waiter(job_type: str) -> str:
return {
"training": "TrainingJobComplete",
"transform": "TransformJobComplete",
"processing": "ProcessingJobComplete",
"tuning": "TuningJobComplete",
"endpoint": "endpoint_in_service", # this one is provided by boto
}[job_type.lower()]
@staticmethod
def _get_waiter_arg_name(job_type: str) -> str:
return {
"training": "TrainingJobName",
"transform": "TransformJobName",
"processing": "ProcessingJobName",
"tuning": "HyperParameterTuningJobName",
"endpoint": "EndpointName",
}[job_type.lower()]
@staticmethod
def _get_response_status_key(job_type: str) -> str:
return {
"training": "TrainingJobStatus",
"transform": "TransformJobStatus",
"processing": "ProcessingJobStatus",
"tuning": "HyperParameterTuningJobStatus",
"endpoint": "EndpointStatus",
}[job_type.lower()]
[docs] async def run(self):
self.log.info("job name is %s and job type is %s", self.job_name, self.job_type)
async with self.hook.async_conn as client:
waiter = self.hook.get_waiter(
self._get_job_type_waiter(self.job_type), deferrable=True, client=client
)
await async_wait(
waiter=waiter,
waiter_delay=self.poke_interval,
waiter_max_attempts=self.max_attempts,
args={self._get_waiter_arg_name(self.job_type): self.job_name},
failure_message=f"Error while waiting for {self.job_type} job",
status_message=f"{self.job_type} job not done yet",
status_args=[self._get_response_status_key(self.job_type)],
)
yield TriggerEvent({"status": "success", "message": "Job completed."})
[docs]class SageMakerPipelineTrigger(BaseTrigger):
"""Trigger to wait for a sagemaker pipeline execution to finish."""
[docs] class Type(IntEnum):
"""Type of waiter to use."""
def __init__(
self,
waiter_type: Type,
pipeline_execution_arn: str,
waiter_delay: int,
waiter_max_attempts: int,
aws_conn_id: str,
):
self.waiter_type = waiter_type
self.pipeline_execution_arn = pipeline_execution_arn
self.waiter_delay = waiter_delay
self.waiter_max_attempts = waiter_max_attempts
self.aws_conn_id = aws_conn_id
[docs] def serialize(self) -> tuple[str, dict[str, Any]]:
return (
self.__class__.__module__ + "." + self.__class__.__qualname__,
{
"waiter_type": self.waiter_type.value, # saving the int value here
"pipeline_execution_arn": self.pipeline_execution_arn,
"waiter_delay": self.waiter_delay,
"waiter_max_attempts": self.waiter_max_attempts,
"aws_conn_id": self.aws_conn_id,
},
)
_waiter_name = {
Type.COMPLETE: "PipelineExecutionComplete",
Type.STOPPED: "PipelineExecutionStopped",
}
[docs] async def run(self) -> AsyncIterator[TriggerEvent]:
hook = SageMakerHook(aws_conn_id=self.aws_conn_id)
async with hook.async_conn as conn:
waiter = hook.get_waiter(self._waiter_name[self.waiter_type], deferrable=True, client=conn)
for _ in range(self.waiter_max_attempts):
try:
await waiter.wait(
PipelineExecutionArn=self.pipeline_execution_arn, WaiterConfig={"MaxAttempts": 1}
)
# we reach this point only if the waiter met a success criteria
yield TriggerEvent({"status": "success", "value": self.pipeline_execution_arn})
return
except WaiterError as error:
if "terminal failure" in str(error):
raise
self.log.info(
"Status of the pipeline execution: %s", error.last_response["PipelineExecutionStatus"]
)
res = await conn.list_pipeline_execution_steps(
PipelineExecutionArn=self.pipeline_execution_arn
)
count_by_state = Counter(s["StepStatus"] for s in res["PipelineExecutionSteps"])
running_steps = [
s["StepName"] for s in res["PipelineExecutionSteps"] if s["StepStatus"] == "Executing"
]
self.log.info("State of the pipeline steps: %s", count_by_state)
self.log.info("Steps currently in progress: %s", running_steps)
await asyncio.sleep(int(self.waiter_delay))
raise AirflowException("Waiter error: max attempts reached")