#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import ast
import warnings
from datetime import timedelta
from functools import cached_property
from typing import TYPE_CHECKING, Any, Sequence
from uuid import uuid4
from airflow.configuration import conf
from airflow.exceptions import AirflowException, AirflowProviderDeprecationWarning
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.emr import EmrContainerHook, EmrHook, EmrServerlessHook
from airflow.providers.amazon.aws.links.emr import EmrClusterLink, EmrLogsLink, get_log_uri
from airflow.providers.amazon.aws.triggers.emr import (
    EmrAddStepsTrigger,
    EmrContainerTrigger,
    EmrCreateJobFlowTrigger,
    EmrServerlessCancelJobsTrigger,
    EmrServerlessCreateApplicationTrigger,
    EmrServerlessDeleteApplicationTrigger,
    EmrServerlessStartApplicationTrigger,
    EmrServerlessStartJobTrigger,
    EmrServerlessStopApplicationTrigger,
    EmrTerminateJobFlowTrigger,
)
from airflow.providers.amazon.aws.utils.waiter import waiter
from airflow.providers.amazon.aws.utils.waiter_with_logging import wait
from airflow.utils.helpers import exactly_one, prune_dict
from airflow.utils.types import NOTSET, ArgNotSet
if TYPE_CHECKING:
    from airflow.utils.context import Context
[docs]class EmrAddStepsOperator(BaseOperator):
    """
    An operator that adds steps to an existing EMR job_flow.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrAddStepsOperator`
    :param job_flow_id: id of the JobFlow to add steps to. (templated)
    :param job_flow_name: name of the JobFlow to add steps to. Use as an alternative to passing
        job_flow_id. will search for id of JobFlow with matching name in one of the states in
        param cluster_states. Exactly one cluster like this should exist or will fail. (templated)
    :param cluster_states: Acceptable cluster states when searching for JobFlow id by job_flow_name.
        (templated)
    :param aws_conn_id: aws connection to uses
    :param steps: boto3 style steps or reference to a steps file (must be '.json') to
        be added to the jobflow. (templated)
    :param wait_for_completion: If True, the operator will wait for all the steps to be completed.
    :param execution_role_arn: The ARN of the runtime role for a step on the cluster.
    :param do_xcom_push: if True, job_flow_id is pushed to XCom with key job_flow_id.
    :param wait_for_completion: Whether to wait for job run completion. (default: True)
    :param deferrable: If True, the operator will wait asynchronously for the job to complete.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False)
    """
[docs]    template_fields: Sequence[str] = (
        "job_flow_id",
        "job_flow_name",
        "cluster_states",
        "steps",
        "execution_role_arn",
    ) 
[docs]    template_ext: Sequence[str] = (".json",) 
[docs]    template_fields_renderers = {"steps": "json"} 
    def __init__(
        self,
        *,
        job_flow_id: str | None = None,
        job_flow_name: str | None = None,
        cluster_states: list[str] | None = None,
        aws_conn_id: str = "aws_default",
        steps: list[dict] | str | None = None,
        wait_for_completion: bool = False,
        waiter_delay: int | None = 30,
        waiter_max_attempts: int | None = 60,
        execution_role_arn: str | None = None,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        if not exactly_one(job_flow_id is None, job_flow_name is None):
            raise AirflowException("Exactly one of job_flow_id or job_flow_name must be specified.")
        super().__init__(**kwargs)
        cluster_states = cluster_states or []
        steps = steps or []
        self.aws_conn_id = aws_conn_id
        self.job_flow_id = job_flow_id
        self.job_flow_name = job_flow_name
        self.cluster_states = cluster_states
        self.steps = steps
        self.wait_for_completion = False if deferrable else wait_for_completion
        self.waiter_delay = waiter_delay
        self.waiter_max_attempts = waiter_max_attempts
        self.execution_role_arn = execution_role_arn
        self.deferrable = deferrable
[docs]    def execute(self, context: Context) -> list[str]:
        emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
        job_flow_id = self.job_flow_id or emr_hook.get_cluster_id_by_name(
            str(self.job_flow_name), self.cluster_states
        )
        if not job_flow_id:
            raise AirflowException(f"No cluster found for name: {self.job_flow_name}")
        if self.do_xcom_push:
            context["ti"].xcom_push(key="job_flow_id", value=job_flow_id)
        EmrClusterLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=job_flow_id,
        )
        EmrLogsLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=self.job_flow_id,
            log_uri=get_log_uri(emr_client=emr_hook.conn, job_flow_id=job_flow_id),
        )
        self.log.info("Adding steps to %s", job_flow_id)
        # steps may arrive as a string representing a list
        # e.g. if we used XCom or a file then: steps="[{ step1 }, { step2 }]"
        steps = self.steps
        if isinstance(steps, str):
            steps = ast.literal_eval(steps)
        step_ids = emr_hook.add_job_flow_steps(
            job_flow_id=job_flow_id,
            steps=steps,
            wait_for_completion=self.wait_for_completion,
            waiter_delay=self.waiter_delay,
            waiter_max_attempts=self.waiter_max_attempts,
            execution_role_arn=self.execution_role_arn,
        )
        if self.deferrable:
            self.defer(
                trigger=EmrAddStepsTrigger(
                    job_flow_id=job_flow_id,
                    step_ids=step_ids,
                    aws_conn_id=self.aws_conn_id,
                    max_attempts=self.waiter_max_attempts,
                    poll_interval=self.waiter_delay,
                ),
                method_name="execute_complete",
            )
        return step_ids 
[docs]    def execute_complete(self, context, event=None):
        if event["status"] != "success":
            raise AirflowException(f"Error resuming cluster: {event}")
        else:
            self.log.info("Steps completed successfully")
        return event["step_ids"]  
[docs]class EmrStartNotebookExecutionOperator(BaseOperator):
    """
    An operator that starts an EMR notebook execution.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrStartNotebookExecutionOperator`
    :param editor_id: The unique identifier of the EMR notebook to use for notebook execution.
    :param relative_path: The path and file name of the notebook file for this execution,
        relative to the path specified for the EMR notebook.
    :param cluster_id: The unique identifier of the EMR cluster the notebook is attached to.
    :param service_role: The name or ARN of the IAM role that is used as the service role
        for Amazon EMR (the EMR role) for the notebook execution.
    :param notebook_execution_name: Optional name for the notebook execution.
    :param notebook_params: Input parameters in JSON format passed to the EMR notebook at
        runtime for execution.
    :param: notebook_instance_security_group_id: The unique identifier of the Amazon EC2
        security group to associate with the EMR notebook for this notebook execution.
    :param: master_instance_security_group_id: Optional unique ID of an EC2 security
        group to associate with the master instance of the EMR cluster for this notebook execution.
    :param tags: Optional list of key value pair to associate with the notebook execution.
    :param waiter_max_attempts: Maximum number of tries before failing.
    :param waiter_delay: Number of seconds between polling the state of the notebook.
    :param waiter_countdown: Total amount of time the operator will wait for the notebook to stop.
        Defaults to 25 * 60 seconds. (Deprecated.  Please use waiter_max_attempts.)
    :param waiter_check_interval_seconds: Number of seconds between polling the state of the notebook.
        Defaults to 60 seconds. (Deprecated.  Please use waiter_delay.)
    """
[docs]    template_fields: Sequence[str] = (
        "editor_id",
        "cluster_id",
        "relative_path",
        "service_role",
        "notebook_execution_name",
        "notebook_params",
        "notebook_instance_security_group_id",
        "master_instance_security_group_id",
        "tags",
        "waiter_delay",
        "waiter_max_attempts",
    ) 
    def __init__(
        self,
        editor_id: str,
        relative_path: str,
        cluster_id: str,
        service_role: str,
        notebook_execution_name: str | None = None,
        notebook_params: str | None = None,
        notebook_instance_security_group_id: str | None = None,
        master_instance_security_group_id: str | None = None,
        tags: list | None = None,
        wait_for_completion: bool = False,
        aws_conn_id: str = "aws_default",
        # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated.
        waiter_max_attempts: int | None | ArgNotSet = NOTSET,
        waiter_delay: int | None | ArgNotSet = NOTSET,
        waiter_countdown: int = 25 * 60,
        waiter_check_interval_seconds: int = 60,
        **kwargs: Any,
    ):
        if waiter_max_attempts is NOTSET:
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            waiter_max_attempts = waiter_countdown // waiter_check_interval_seconds
        if waiter_delay is NOTSET:
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to "
                "standardize naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            waiter_delay = waiter_check_interval_seconds
        super().__init__(**kwargs)
        self.editor_id = editor_id
        self.relative_path = relative_path
        self.service_role = service_role
        self.notebook_execution_name = notebook_execution_name or f"emr_notebook_{uuid4()}"
        self.notebook_params = notebook_params or ""
        self.notebook_instance_security_group_id = notebook_instance_security_group_id or ""
        self.tags = tags or []
        self.wait_for_completion = wait_for_completion
        self.cluster_id = cluster_id
        self.aws_conn_id = aws_conn_id
        self.waiter_max_attempts = waiter_max_attempts
        self.waiter_delay = waiter_delay
        self.master_instance_security_group_id = master_instance_security_group_id
[docs]    def execute(self, context: Context):
        execution_engine = {
            "Id": self.cluster_id,
            "Type": "EMR",
            "MasterInstanceSecurityGroupId": self.master_instance_security_group_id or "",
        }
        emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
        response = emr_hook.conn.start_notebook_execution(
            EditorId=self.editor_id,
            RelativePath=self.relative_path,
            NotebookExecutionName=self.notebook_execution_name,
            NotebookParams=self.notebook_params,
            ExecutionEngine=execution_engine,
            ServiceRole=self.service_role,
            NotebookInstanceSecurityGroupId=self.notebook_instance_security_group_id,
            Tags=self.tags,
        )
        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
            raise AirflowException(f"Starting notebook execution failed: {response}")
        self.log.info("Notebook execution started: %s", response["NotebookExecutionId"])
        notebook_execution_id = response["NotebookExecutionId"]
        if self.wait_for_completion:
            emr_hook.get_waiter("notebook_running").wait(
                NotebookExecutionId=notebook_execution_id,
                WaiterConfig=prune_dict(
                    {
                        "Delay": self.waiter_delay,
                        "MaxAttempts": self.waiter_max_attempts,
                    }
                ),
            )
            # The old Waiter method raised an exception if the notebook
            # failed, adding that here.  This could maybe be deprecated
            # later to bring it in line with how other waiters behave.
            failure_states = {"FAILED"}
            final_status = emr_hook.conn.describe_notebook_execution(
                NotebookExecutionId=notebook_execution_id
            )["NotebookExecution"]["Status"]
            if final_status in failure_states:
                raise AirflowException(f"Notebook Execution reached failure state {final_status}.")
        return notebook_execution_id  
[docs]class EmrStopNotebookExecutionOperator(BaseOperator):
    """
    An operator that stops a running EMR notebook execution.
     .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrStopNotebookExecutionOperator`
    :param notebook_execution_id: The unique identifier of the notebook execution.
    :param wait_for_completion: If True, the operator will wait for the notebook.
        to be in a STOPPED or FINISHED state. Defaults to False.
    :param aws_conn_id: aws connection to use.
    :param waiter_max_attempts: Maximum number of tries before failing.
    :param waiter_delay: Number of seconds between polling the state of the notebook.
    :param waiter_countdown: Total amount of time the operator will wait for the notebook to stop.
        Defaults to 25 * 60 seconds. (Deprecated.  Please use waiter_max_attempts.)
    :param waiter_check_interval_seconds: Number of seconds between polling the state of the notebook.
        Defaults to 60 seconds. (Deprecated.  Please use waiter_delay.)
    """
[docs]    template_fields: Sequence[str] = (
        "notebook_execution_id",
        "waiter_delay",
        "waiter_max_attempts",
    ) 
    def __init__(
        self,
        notebook_execution_id: str,
        wait_for_completion: bool = False,
        aws_conn_id: str = "aws_default",
        # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated.
        waiter_max_attempts: int | None | ArgNotSet = NOTSET,
        waiter_delay: int | None | ArgNotSet = NOTSET,
        waiter_countdown: int = 25 * 60,
        waiter_check_interval_seconds: int = 60,
        **kwargs: Any,
    ):
        if waiter_max_attempts is NOTSET:
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            waiter_max_attempts = waiter_countdown // waiter_check_interval_seconds
        if waiter_delay is NOTSET:
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to "
                "standardize naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            waiter_delay = waiter_check_interval_seconds
        super().__init__(**kwargs)
        self.notebook_execution_id = notebook_execution_id
        self.wait_for_completion = wait_for_completion
        self.aws_conn_id = aws_conn_id
        self.waiter_max_attempts = waiter_max_attempts
        self.waiter_delay = waiter_delay
[docs]    def execute(self, context: Context) -> None:
        emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
        emr_hook.conn.stop_notebook_execution(NotebookExecutionId=self.notebook_execution_id)
        if self.wait_for_completion:
            emr_hook.get_waiter("notebook_stopped").wait(
                NotebookExecutionId=self.notebook_execution_id,
                WaiterConfig=prune_dict(
                    {
                        "Delay": self.waiter_delay,
                        "MaxAttempts": self.waiter_max_attempts,
                    }
                ),
            )  
[docs]class EmrEksCreateClusterOperator(BaseOperator):
    """
    An operator that creates EMR on EKS virtual clusters.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrEksCreateClusterOperator`
    :param virtual_cluster_name: The name of the EMR EKS virtual cluster to create.
    :param eks_cluster_name: The EKS cluster used by the EMR virtual cluster.
    :param eks_namespace: namespace used by the EKS cluster.
    :param virtual_cluster_id: The EMR on EKS virtual cluster id.
    :param aws_conn_id: The Airflow connection used for AWS credentials.
    :param tags: The tags assigned to created cluster.
        Defaults to None
    """
[docs]    template_fields: Sequence[str] = (
        "virtual_cluster_name",
        "eks_cluster_name",
        "eks_namespace",
    ) 
    def __init__(
        self,
        *,
        virtual_cluster_name: str,
        eks_cluster_name: str,
        eks_namespace: str,
        virtual_cluster_id: str = "",
        aws_conn_id: str = "aws_default",
        tags: dict | None = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.virtual_cluster_name = virtual_cluster_name
        self.eks_cluster_name = eks_cluster_name
        self.eks_namespace = eks_namespace
        self.virtual_cluster_id = virtual_cluster_id
        self.aws_conn_id = aws_conn_id
        self.tags = tags
    @cached_property
[docs]    def hook(self) -> EmrContainerHook:
        """Create and return an EmrContainerHook."""
        return EmrContainerHook(self.aws_conn_id) 
[docs]    def execute(self, context: Context) -> str | None:
        """Create EMR on EKS virtual Cluster."""
        self.virtual_cluster_id = self.hook.create_emr_on_eks_cluster(
            self.virtual_cluster_name, self.eks_cluster_name, self.eks_namespace, self.tags
        )
        return self.virtual_cluster_id  
[docs]class EmrContainerOperator(BaseOperator):
    """
    An operator that submits jobs to EMR on EKS virtual clusters.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrContainerOperator`
    :param name: The name of the job run.
    :param virtual_cluster_id: The EMR on EKS virtual cluster ID
    :param execution_role_arn: The IAM role ARN associated with the job run.
    :param release_label: The Amazon EMR release version to use for the job run.
    :param job_driver: Job configuration details, e.g. the Spark job parameters.
    :param configuration_overrides: The configuration overrides for the job run,
        specifically either application configuration or monitoring configuration.
    :param client_request_token: The client idempotency token of the job run request.
        Use this if you want to specify a unique ID to prevent two jobs from getting started.
        If no token is provided, a UUIDv4 token will be generated for you.
    :param aws_conn_id: The Airflow connection used for AWS credentials.
    :param wait_for_completion: Whether or not to wait in the operator for the job to complete.
    :param poll_interval: Time (in seconds) to wait between two consecutive calls to check query status on EMR
    :param max_tries: Deprecated - use max_polling_attempts instead.
    :param max_polling_attempts: Maximum number of times to wait for the job run to finish.
        Defaults to None, which will poll until the job is *not* in a pending, submitted, or running state.
    :param tags: The tags assigned to job runs.
        Defaults to None
    :param deferrable: Run operator in the deferrable mode.
    """
[docs]    template_fields: Sequence[str] = (
        "name",
        "virtual_cluster_id",
        "execution_role_arn",
        "release_label",
        "job_driver",
        "configuration_overrides",
    ) 
    def __init__(
        self,
        *,
        name: str,
        virtual_cluster_id: str,
        execution_role_arn: str,
        release_label: str,
        job_driver: dict,
        configuration_overrides: dict | None = None,
        client_request_token: str | None = None,
        aws_conn_id: str = "aws_default",
        wait_for_completion: bool = True,
        poll_interval: int = 30,
        max_tries: int | None = None,
        tags: dict | None = None,
        max_polling_attempts: int | None = None,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.name = name
        self.virtual_cluster_id = virtual_cluster_id
        self.execution_role_arn = execution_role_arn
        self.release_label = release_label
        self.job_driver = job_driver
        self.configuration_overrides = configuration_overrides or {}
        self.aws_conn_id = aws_conn_id
        self.client_request_token = client_request_token or str(uuid4())
        self.wait_for_completion = wait_for_completion
        self.poll_interval = poll_interval
        self.max_polling_attempts = max_polling_attempts
        self.tags = tags
        self.job_id: str | None = None
        self.deferrable = deferrable
        if max_tries:
            warnings.warn(
                f"Parameter `{self.__class__.__name__}.max_tries` is deprecated and will be removed "
                "in a future release.  Please use method `max_polling_attempts` instead.",
                AirflowProviderDeprecationWarning,
                stacklevel=2,
            )
            if max_polling_attempts and max_polling_attempts != max_tries:
                raise Exception("max_polling_attempts must be the same value as max_tries")
            else:
                self.max_polling_attempts = max_tries
    @cached_property
[docs]    def hook(self) -> EmrContainerHook:
        """Create and return an EmrContainerHook."""
        return EmrContainerHook(
            self.aws_conn_id,
            virtual_cluster_id=self.virtual_cluster_id,
        ) 
[docs]    def execute(self, context: Context) -> str | None:
        """Run job on EMR Containers."""
        self.job_id = self.hook.submit_job(
            self.name,
            self.execution_role_arn,
            self.release_label,
            self.job_driver,
            self.configuration_overrides,
            self.client_request_token,
            self.tags,
        )
        if self.deferrable:
            query_status = self.hook.check_query_status(job_id=self.job_id)
            self.check_failure(query_status)
            if query_status in EmrContainerHook.SUCCESS_STATES:
                return self.job_id
            timeout = (
                timedelta(seconds=self.max_polling_attempts * self.poll_interval)
                if self.max_polling_attempts
                else self.execution_timeout
            )
            self.defer(
                timeout=timeout,
                trigger=EmrContainerTrigger(
                    virtual_cluster_id=self.virtual_cluster_id,
                    job_id=self.job_id,
                    aws_conn_id=self.aws_conn_id,
                    waiter_delay=self.poll_interval,
                ),
                method_name="execute_complete",
            )
        if self.wait_for_completion:
            query_status = self.hook.poll_query_status(
                self.job_id,
                max_polling_attempts=self.max_polling_attempts,
                poll_interval=self.poll_interval,
            )
            self.check_failure(query_status)
            if not query_status or query_status in EmrContainerHook.INTERMEDIATE_STATES:
                raise AirflowException(
                    f"Final state of EMR Containers job is {query_status}. "
                    f"Max tries of poll status exceeded, query_execution_id is {self.job_id}."
                )
        return self.job_id 
[docs]    def check_failure(self, query_status):
        if query_status in EmrContainerHook.FAILURE_STATES:
            error_message = self.hook.get_job_failure_reason(self.job_id)
            raise AirflowException(
                f"EMR Containers job failed. Final state is {query_status}. "
                f"query_execution_id is {self.job_id}. Error: {error_message}"
            ) 
[docs]    def execute_complete(self, context, event=None):
        if event["status"] != "success":
            raise AirflowException(f"Error while running job: {event}")
        self.log.info("%s", event["message"])
        return event["job_id"] 
[docs]    def on_kill(self) -> None:
        """Cancel the submitted job run."""
        if self.job_id:
            self.log.info("Stopping job run with jobId - %s", self.job_id)
            response = self.hook.stop_query(self.job_id)
            http_status_code = None
            try:
                http_status_code = response["ResponseMetadata"]["HTTPStatusCode"]
            except Exception as ex:
                self.log.error("Exception while cancelling query: %s", ex)
            finally:
                if http_status_code is None or http_status_code != 200:
                    self.log.error("Unable to request query cancel on EMR. Exiting")
                else:
                    self.log.info(
                        "Polling EMR for query with id %s to reach final state",
                        self.job_id,
                    )
                    self.hook.poll_query_status(self.job_id)  
[docs]class EmrCreateJobFlowOperator(BaseOperator):
    """
    Creates an EMR JobFlow, reading the config from the EMR connection.
    A dictionary of JobFlow overrides can be passed that override the config from the connection.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrCreateJobFlowOperator`
    :param aws_conn_id: The Airflow connection used for AWS credentials.
        If this is None or empty then the default boto3 behaviour is used. If
        running Airflow in a distributed manner and aws_conn_id is None or
        empty, then default boto3 configuration would be used (and must be
        maintained on each worker node)
    :param emr_conn_id: :ref:`Amazon Elastic MapReduce Connection <howto/connection:emr>`.
        Use to receive an initial Amazon EMR cluster configuration:
        ``boto3.client('emr').run_job_flow`` request body.
        If this is None or empty or the connection does not exist,
        then an empty initial configuration is used.
    :param job_flow_overrides: boto3 style arguments or reference to an arguments file
        (must be '.json') to override specific ``emr_conn_id`` extra parameters. (templated)
    :param region_name: Region named passed to EmrHook
    :param wait_for_completion: Whether to finish task immediately after creation (False) or wait for jobflow
        completion (True)
    :param waiter_max_attempts: Maximum number of tries before failing.
    :param waiter_delay: Number of seconds between polling the state of the notebook.
    :param waiter_countdown: Max. seconds to wait for jobflow completion (only in combination with
        wait_for_completion=True, None = no limit) (Deprecated.  Please use waiter_max_attempts.)
    :param waiter_check_interval_seconds: Number of seconds between polling the jobflow state. Defaults to 60
        seconds. (Deprecated.  Please use waiter_delay.)
    :param deferrable: If True, the operator will wait asynchronously for the crawl to complete.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False)
    """
[docs]    template_fields: Sequence[str] = (
        "job_flow_overrides",
        "waiter_delay",
        "waiter_max_attempts",
    ) 
[docs]    template_ext: Sequence[str] = (".json",) 
[docs]    template_fields_renderers = {"job_flow_overrides": "json"} 
    def __init__(
        self,
        *,
        aws_conn_id: str = "aws_default",
        emr_conn_id: str | None = "emr_default",
        job_flow_overrides: str | dict[str, Any] | None = None,
        region_name: str | None = None,
        wait_for_completion: bool = False,
        # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated.
        waiter_max_attempts: int | None | ArgNotSet = NOTSET,
        waiter_delay: int | None | ArgNotSet = NOTSET,
        waiter_countdown: int | None = None,
        waiter_check_interval_seconds: int = 60,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs: Any,
    ):
        if waiter_max_attempts is NOTSET:
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            # waiter_countdown defaults to never timing out, which is not supported
            # by boto waiters, so we will set it here to "a very long time" for now.
            waiter_max_attempts = (waiter_countdown or 999) // waiter_check_interval_seconds
        if waiter_delay is NOTSET:
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to "
                "standardize naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
            waiter_delay = waiter_check_interval_seconds
        super().__init__(**kwargs)
        self.aws_conn_id = aws_conn_id
        self.emr_conn_id = emr_conn_id
        self.job_flow_overrides = job_flow_overrides or {}
        self.region_name = region_name
        self.wait_for_completion = wait_for_completion
        self.waiter_max_attempts = int(waiter_max_attempts)  # type: ignore[arg-type]
        self.waiter_delay = int(waiter_delay)  # type: ignore[arg-type]
        self.deferrable = deferrable
    @cached_property
    def _emr_hook(self) -> EmrHook:
        """Create and return an EmrHook."""
        return EmrHook(
            aws_conn_id=self.aws_conn_id, emr_conn_id=self.emr_conn_id, region_name=self.region_name
        )
[docs]    def execute(self, context: Context) -> str | None:
        self.log.info(
            "Creating job flow using aws_conn_id: %s, emr_conn_id: %s", self.aws_conn_id, self.emr_conn_id
        )
        if isinstance(self.job_flow_overrides, str):
            job_flow_overrides: dict[str, Any] = ast.literal_eval(self.job_flow_overrides)
            self.job_flow_overrides = job_flow_overrides
        else:
            job_flow_overrides = self.job_flow_overrides
        response = self._emr_hook.create_job_flow(job_flow_overrides)
        if not response["ResponseMetadata"]["HTTPStatusCode"] == 200:
            raise AirflowException(f"Job flow creation failed: {response}")
        else:
            self._job_flow_id = response["JobFlowId"]
            self.log.info("Job flow with id %s created", self._job_flow_id)
            EmrClusterLink.persist(
                context=context,
                operator=self,
                region_name=self._emr_hook.conn_region_name,
                aws_partition=self._emr_hook.conn_partition,
                job_flow_id=self._job_flow_id,
            )
            if self._job_flow_id:
                EmrLogsLink.persist(
                    context=context,
                    operator=self,
                    region_name=self._emr_hook.conn_region_name,
                    aws_partition=self._emr_hook.conn_partition,
                    job_flow_id=self._job_flow_id,
                    log_uri=get_log_uri(emr_client=self._emr_hook.conn, job_flow_id=self._job_flow_id),
                )
            if self.deferrable:
                self.defer(
                    trigger=EmrCreateJobFlowTrigger(
                        job_flow_id=self._job_flow_id,
                        aws_conn_id=self.aws_conn_id,
                        poll_interval=self.waiter_delay,
                        max_attempts=self.waiter_max_attempts,
                    ),
                    method_name="execute_complete",
                    # timeout is set to ensure that if a trigger dies, the timeout does not restart
                    # 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent)
                    timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay + 60),
                )
            if self.wait_for_completion:
                self._emr_hook.get_waiter("job_flow_waiting").wait(
                    ClusterId=self._job_flow_id,
                    WaiterConfig=prune_dict(
                        {
                            "Delay": self.waiter_delay,
                            "MaxAttempts": self.waiter_max_attempts,
                        }
                    ),
                )
            return self._job_flow_id 
[docs]    def execute_complete(self, context, event=None):
        if event["status"] != "success":
            raise AirflowException(f"Error creating jobFlow: {event}")
        else:
            self.log.info("JobFlow created successfully")
        return event["job_flow_id"] 
[docs]    def on_kill(self) -> None:
        """Terminate the EMR cluster (job flow) unless TerminationProtected is enabled on the cluster."""
        if self._job_flow_id:
            self.log.info("Terminating job flow %s", self._job_flow_id)
            self._emr_hook.conn.terminate_job_flows(JobFlowIds=[self._job_flow_id])  
[docs]class EmrModifyClusterOperator(BaseOperator):
    """
    An operator that modifies an existing EMR cluster.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrModifyClusterOperator`
    :param cluster_id: cluster identifier
    :param step_concurrency_level: Concurrency of the cluster
    :param aws_conn_id: aws connection to uses
    :param do_xcom_push: if True, cluster_id is pushed to XCom with key cluster_id.
    """
[docs]    template_fields: Sequence[str] = ("cluster_id", "step_concurrency_level") 
[docs]    template_ext: Sequence[str] = () 
    def __init__(
        self, *, cluster_id: str, step_concurrency_level: int, aws_conn_id: str = "aws_default", **kwargs
    ):
        super().__init__(**kwargs)
        self.aws_conn_id = aws_conn_id
        self.cluster_id = cluster_id
        self.step_concurrency_level = step_concurrency_level
[docs]    def execute(self, context: Context) -> int:
        emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
        emr = emr_hook.get_conn()
        if self.do_xcom_push:
            context["ti"].xcom_push(key="cluster_id", value=self.cluster_id)
        EmrClusterLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=self.cluster_id,
        )
        EmrLogsLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=self.cluster_id,
            log_uri=get_log_uri(emr_client=emr_hook.conn, job_flow_id=self.cluster_id),
        )
        self.log.info("Modifying cluster %s", self.cluster_id)
        response = emr.modify_cluster(
            ClusterId=self.cluster_id, StepConcurrencyLevel=self.step_concurrency_level
        )
        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
            raise AirflowException(f"Modify cluster failed: {response}")
        else:
            self.log.info("Steps concurrency level %d", response["StepConcurrencyLevel"])
            return response["StepConcurrencyLevel"]  
[docs]class EmrTerminateJobFlowOperator(BaseOperator):
    """
    Operator to terminate EMR JobFlows.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrTerminateJobFlowOperator`
    :param job_flow_id: id of the JobFlow to terminate. (templated)
    :param aws_conn_id: aws connection to uses
    :param waiter_delay: Time (in seconds) to wait between two consecutive calls to check JobFlow status
    :param waiter_max_attempts: The maximum number of times to poll for JobFlow status.
    :param deferrable: If True, the operator will wait asynchronously for the crawl to complete.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False)
    """
[docs]    template_fields: Sequence[str] = ("job_flow_id",) 
[docs]    template_ext: Sequence[str] = () 
    def __init__(
        self,
        *,
        job_flow_id: str,
        aws_conn_id: str = "aws_default",
        waiter_delay: int = 60,
        waiter_max_attempts: int = 20,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.job_flow_id = job_flow_id
        self.aws_conn_id = aws_conn_id
        self.waiter_delay = waiter_delay
        self.waiter_max_attempts = waiter_max_attempts
        self.deferrable = deferrable
[docs]    def execute(self, context: Context) -> None:
        emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
        emr = emr_hook.get_conn()
        EmrClusterLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=self.job_flow_id,
        )
        EmrLogsLink.persist(
            context=context,
            operator=self,
            region_name=emr_hook.conn_region_name,
            aws_partition=emr_hook.conn_partition,
            job_flow_id=self.job_flow_id,
            log_uri=get_log_uri(emr_client=emr, job_flow_id=self.job_flow_id),
        )
        self.log.info("Terminating JobFlow %s", self.job_flow_id)
        response = emr.terminate_job_flows(JobFlowIds=[self.job_flow_id])
        if not response["ResponseMetadata"]["HTTPStatusCode"] == 200:
            raise AirflowException(f"JobFlow termination failed: {response}")
        else:
            self.log.info("Terminating JobFlow with id %s", self.job_flow_id)
        if self.deferrable:
            self.defer(
                trigger=EmrTerminateJobFlowTrigger(
                    job_flow_id=self.job_flow_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                    aws_conn_id=self.aws_conn_id,
                ),
                method_name="execute_complete",
                # timeout is set to ensure that if a trigger dies, the timeout does not restart
                # 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent)
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay + 60),
            ) 
[docs]    def execute_complete(self, context, event=None):
        if event["status"] != "success":
            raise AirflowException(f"Error terminating JobFlow: {event}")
        else:
            self.log.info("Jobflow terminated successfully.")
        return  
[docs]class EmrServerlessCreateApplicationOperator(BaseOperator):
    """
    Operator to create Serverless EMR Application.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrServerlessCreateApplicationOperator`
    :param release_label: The EMR release version associated with the application.
    :param job_type: The type of application you want to start, such as Spark or Hive.
    :param wait_for_completion: If true, wait for the Application to start before returning. Default to True.
        If set to False, ``waiter_max_attempts`` and ``waiter_delay`` will only be applied when
        waiting for the application to be in the ``CREATED`` state.
    :param client_request_token: The client idempotency token of the application to create.
      Its value must be unique for each request.
    :param config: Optional dictionary for arbitrary parameters to the boto API create_application call.
    :param aws_conn_id: AWS connection to use
    :param waiter_countdown: (deprecated) Total amount of time, in seconds, the operator will wait for
        the application to start. Defaults to 25 minutes.
    :param waiter_check_interval_seconds: (deprecated) Number of seconds between polling the state
        of the application. Defaults to 60 seconds.
    :waiter_max_attempts: Number of times the waiter should poll the application to check the state.
        If not set, the waiter will use its default value.
    :param waiter_delay: Number of seconds between polling the state of the application.
    :param deferrable: If True, the operator will wait asynchronously for application to be created.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False, but can be overridden in config file by setting default_deferrable to True)
    """
    def __init__(
        self,
        release_label: str,
        job_type: str,
        client_request_token: str = "",
        config: dict | None = None,
        wait_for_completion: bool = True,
        aws_conn_id: str = "aws_default",
        waiter_countdown: int | ArgNotSet = NOTSET,
        waiter_check_interval_seconds: int | ArgNotSet = NOTSET,
        waiter_max_attempts: int | ArgNotSet = NOTSET,
        waiter_delay: int | ArgNotSet = NOTSET,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        if waiter_check_interval_seconds is NOTSET:
            waiter_delay = 60 if waiter_delay is NOTSET else waiter_delay
        else:
            waiter_delay = waiter_check_interval_seconds if waiter_delay is NOTSET else waiter_delay
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to standardize "
                "naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        if waiter_countdown is NOTSET:
            waiter_max_attempts = 25 if waiter_max_attempts is NOTSET else waiter_max_attempts
        else:
            if waiter_max_attempts is NOTSET:
                # ignoring mypy because it doesn't like ArgNotSet as an operand, but neither variables
                # are of type ArgNotSet at this point.
                waiter_max_attempts = waiter_countdown // waiter_delay  # type: ignore[operator]
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead. In the "
                "future this will default to None and defer to the waiter's default value."
            )
        self.aws_conn_id = aws_conn_id
        self.release_label = release_label
        self.job_type = job_type
        self.wait_for_completion = wait_for_completion
        self.kwargs = kwargs
        self.config = config or {}
        self.waiter_max_attempts = int(waiter_max_attempts)  # type: ignore[arg-type]
        self.waiter_delay = int(waiter_delay)  # type: ignore[arg-type]
        self.deferrable = deferrable
        super().__init__(**kwargs)
        self.client_request_token = client_request_token or str(uuid4())
    @cached_property
[docs]    def hook(self) -> EmrServerlessHook:
        """Create and return an EmrServerlessHook."""
        return EmrServerlessHook(aws_conn_id=self.aws_conn_id) 
[docs]    def execute(self, context: Context) -> str | None:
        response = self.hook.conn.create_application(
            clientToken=self.client_request_token,
            releaseLabel=self.release_label,
            type=self.job_type,
            **self.config,
        )
        application_id = response["applicationId"]
        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
            raise AirflowException(f"Application Creation failed: {response}")
        self.log.info("EMR serverless application created: %s", application_id)
        if self.deferrable:
            self.defer(
                trigger=EmrServerlessCreateApplicationTrigger(
                    application_id=application_id,
                    aws_conn_id=self.aws_conn_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                ),
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                method_name="start_application_deferred",
            )
        waiter = self.hook.get_waiter("serverless_app_created")
        wait(
            waiter=waiter,
            waiter_delay=self.waiter_delay,
            waiter_max_attempts=self.waiter_max_attempts,
            args={"applicationId": application_id},
            failure_message="Serverless Application creation failed",
            status_message="Serverless Application status is",
            status_args=["application.state", "application.stateDetails"],
        )
        self.log.info("Starting application %s", application_id)
        self.hook.conn.start_application(applicationId=application_id)
        if self.wait_for_completion:
            waiter = self.hook.get_waiter("serverless_app_started")
            wait(
                waiter=waiter,
                waiter_max_attempts=self.waiter_max_attempts,
                waiter_delay=self.waiter_delay,
                args={"applicationId": application_id},
                failure_message="Serverless Application failed to start",
                status_message="Serverless Application status is",
                status_args=["application.state", "application.stateDetails"],
            )
        return application_id 
[docs]    def start_application_deferred(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None:
            self.log.error("Trigger error: event is None")
            raise AirflowException("Trigger error: event is None")
        elif event["status"] != "success":
            raise AirflowException(f"Application {event['application_id']} failed to create")
        self.log.info("Starting application %s", event["application_id"])
        self.hook.conn.start_application(applicationId=event["application_id"])
        self.defer(
            trigger=EmrServerlessStartApplicationTrigger(
                application_id=event["application_id"],
                aws_conn_id=self.aws_conn_id,
                waiter_delay=self.waiter_delay,
                waiter_max_attempts=self.waiter_max_attempts,
            ),
            timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
            method_name="execute_complete",
        ) 
[docs]    def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None or event["status"] != "success":
            raise AirflowException(f"Trigger error: Application failed to start, event is {event}")
        self.log.info("Application %s started", event["application_id"])
        return event["application_id"]  
[docs]class EmrServerlessStartJobOperator(BaseOperator):
    """
    Operator to start EMR Serverless job.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrServerlessStartJobOperator`
    :param application_id: ID of the EMR Serverless application to start.
    :param execution_role_arn: ARN of role to perform action.
    :param job_driver: Driver that the job runs on.
    :param configuration_overrides: Configuration specifications to override existing configurations.
    :param client_request_token: The client idempotency token of the application to create.
      Its value must be unique for each request.
    :param config: Optional dictionary for arbitrary parameters to the boto API start_job_run call.
    :param wait_for_completion: If true, waits for the job to start before returning. Defaults to True.
        If set to False, ``waiter_countdown`` and ``waiter_check_interval_seconds`` will only be applied
        when waiting for the application be to in the ``STARTED`` state.
    :param aws_conn_id: AWS connection to use.
    :param name: Name for the EMR Serverless job. If not provided, a default name will be assigned.
    :param waiter_countdown: (deprecated) Total amount of time, in seconds, the operator will wait for
        the job finish. Defaults to 25 minutes.
    :param waiter_check_interval_seconds: (deprecated) Number of seconds between polling the state of the job.
        Defaults to 60 seconds.
    :waiter_max_attempts: Number of times the waiter should poll the application to check the state.
        If not set, the waiter will use its default value.
    :param waiter_delay: Number of seconds between polling the state of the job run.
    :param deferrable: If True, the operator will wait asynchronously for the crawl to complete.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False, but can be overridden in config file by setting default_deferrable to True)
    """
[docs]    template_fields: Sequence[str] = (
        "application_id",
        "config",
        "execution_role_arn",
        "job_driver",
        "configuration_overrides",
    ) 
[docs]    template_fields_renderers = {
        "config": "json",
        "configuration_overrides": "json",
    } 
    def __init__(
        self,
        application_id: str,
        execution_role_arn: str,
        job_driver: dict,
        configuration_overrides: dict | None,
        client_request_token: str = "",
        config: dict | None = None,
        wait_for_completion: bool = True,
        aws_conn_id: str = "aws_default",
        name: str | None = None,
        waiter_countdown: int | ArgNotSet = NOTSET,
        waiter_check_interval_seconds: int | ArgNotSet = NOTSET,
        waiter_max_attempts: int | ArgNotSet = NOTSET,
        waiter_delay: int | ArgNotSet = NOTSET,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        if waiter_check_interval_seconds is NOTSET:
            waiter_delay = 60 if waiter_delay is NOTSET else waiter_delay
        else:
            waiter_delay = waiter_check_interval_seconds if waiter_delay is NOTSET else waiter_delay
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to standardize "
                "naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        if waiter_countdown is NOTSET:
            waiter_max_attempts = 25 if waiter_max_attempts is NOTSET else waiter_max_attempts
        else:
            if waiter_max_attempts is NOTSET:
                # ignoring mypy because it doesn't like ArgNotSet as an operand, but neither variables
                # are of type ArgNotSet at this point.
                waiter_max_attempts = waiter_countdown // waiter_delay  # type: ignore[operator]
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        self.aws_conn_id = aws_conn_id
        self.application_id = application_id
        self.execution_role_arn = execution_role_arn
        self.job_driver = job_driver
        self.configuration_overrides = configuration_overrides
        self.wait_for_completion = wait_for_completion
        self.config = config or {}
        self.name = name or self.config.pop("name", f"emr_serverless_job_airflow_{uuid4()}")
        self.waiter_max_attempts = int(waiter_max_attempts)  # type: ignore[arg-type]
        self.waiter_delay = int(waiter_delay)  # type: ignore[arg-type]
        self.job_id: str | None = None
        self.deferrable = deferrable
        super().__init__(**kwargs)
        self.client_request_token = client_request_token or str(uuid4())
    @cached_property
[docs]    def hook(self) -> EmrServerlessHook:
        """Create and return an EmrServerlessHook."""
        return EmrServerlessHook(aws_conn_id=self.aws_conn_id) 
[docs]    def execute(self, context: Context, event: dict[str, Any] | None = None) -> str | None:
        app_state = self.hook.conn.get_application(applicationId=self.application_id)["application"]["state"]
        if app_state not in EmrServerlessHook.APPLICATION_SUCCESS_STATES:
            self.log.info("Application state is %s", app_state)
            self.log.info("Starting application %s", self.application_id)
            self.hook.conn.start_application(applicationId=self.application_id)
            waiter = self.hook.get_waiter("serverless_app_started")
            if self.deferrable:
                self.defer(
                    trigger=EmrServerlessStartApplicationTrigger(
                        application_id=self.application_id,
                        waiter_delay=self.waiter_delay,
                        waiter_max_attempts=self.waiter_max_attempts,
                        aws_conn_id=self.aws_conn_id,
                    ),
                    method_name="execute",
                    timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                )
            wait(
                waiter=waiter,
                waiter_max_attempts=self.waiter_max_attempts,
                waiter_delay=self.waiter_delay,
                args={"applicationId": self.application_id},
                failure_message="Serverless Application failed to start",
                status_message="Serverless Application status is",
                status_args=["application.state", "application.stateDetails"],
            )
        self.log.info("Starting job on Application: %s", self.application_id)
        response = self.hook.conn.start_job_run(
            clientToken=self.client_request_token,
            applicationId=self.application_id,
            executionRoleArn=self.execution_role_arn,
            jobDriver=self.job_driver,
            configurationOverrides=self.configuration_overrides,
            name=self.name,
            **self.config,
        )
        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
            raise AirflowException(f"EMR serverless job failed to start: {response}")
        self.job_id = response["jobRunId"]
        self.log.info("EMR serverless job started: %s", self.job_id)
        if self.deferrable:
            self.defer(
                trigger=EmrServerlessStartJobTrigger(
                    application_id=self.application_id,
                    job_id=self.job_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                    aws_conn_id=self.aws_conn_id,
                ),
                method_name="execute_complete",
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
            )
        if self.wait_for_completion:
            waiter = self.hook.get_waiter("serverless_job_completed")
            wait(
                waiter=waiter,
                waiter_max_attempts=self.waiter_max_attempts,
                waiter_delay=self.waiter_delay,
                args={"applicationId": self.application_id, "jobRunId": self.job_id},
                failure_message="Serverless Job failed",
                status_message="Serverless Job status is",
                status_args=["jobRun.state", "jobRun.stateDetails"],
            )
        return self.job_id 
[docs]    def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None:
            self.log.error("Trigger error: event is None")
            raise AirflowException("Trigger error: event is None")
        elif event["status"] == "success":
            self.log.info("Serverless job completed")
            return event["job_id"] 
[docs]    def on_kill(self) -> None:
        """
        Cancel the submitted job run.
        Note: this method will not run in deferrable mode.
        """
        if self.job_id:
            self.log.info("Stopping job run with jobId - %s", self.job_id)
            response = self.hook.conn.cancel_job_run(applicationId=self.application_id, jobRunId=self.job_id)
            http_status_code = (
                response.get("ResponseMetadata", {}).get("HTTPStatusCode") if response else None
            )
            if http_status_code is None or http_status_code != 200:
                self.log.error("Unable to request query cancel on EMR Serverless. Exiting")
                return
            self.log.info(
                "Polling EMR Serverless for query with id %s to reach final state",
                self.job_id,
            )
            # This should be replaced with a boto waiter when available.
            waiter(
                get_state_callable=self.hook.conn.get_job_run,
                get_state_args={
                    "applicationId": self.application_id,
                    "jobRunId": self.job_id,
                },
                parse_response=["jobRun", "state"],
                desired_state=EmrServerlessHook.JOB_TERMINAL_STATES,
                failure_states=set(),
                object_type="job",
                action="cancelled",
                countdown=self.waiter_delay * self.waiter_max_attempts,
                check_interval_seconds=self.waiter_delay,
            )  
[docs]class EmrServerlessStopApplicationOperator(BaseOperator):
    """
    Operator to stop an EMR Serverless application.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrServerlessStopApplicationOperator`
    :param application_id: ID of the EMR Serverless application to stop.
    :param wait_for_completion: If true, wait for the Application to stop before returning. Default to True
    :param aws_conn_id: AWS connection to use
    :param waiter_countdown: (deprecated) Total amount of time, in seconds, the operator will wait for
        the application be stopped. Defaults to 5 minutes.
    :param waiter_check_interval_seconds: (deprecated) Number of seconds between polling the state of the
        application. Defaults to 60 seconds.
    :param force_stop: If set to True, any job for that app that is not in a terminal state will be cancelled.
        Otherwise, trying to stop an app with running jobs will return an error.
        If you want to wait for the jobs to finish gracefully, use
        :class:`airflow.providers.amazon.aws.sensors.emr.EmrServerlessJobSensor`
    :waiter_max_attempts: Number of times the waiter should poll the application to check the state.
        Default is 25.
    :param waiter_delay: Number of seconds between polling the state of the application.
        Default is 60 seconds.
    :param deferrable: If True, the operator will wait asynchronously for the application to stop.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False, but can be overridden in config file by setting default_deferrable to True)
    """
[docs]    template_fields: Sequence[str] = ("application_id",) 
    def __init__(
        self,
        application_id: str,
        wait_for_completion: bool = True,
        aws_conn_id: str = "aws_default",
        waiter_countdown: int | ArgNotSet = NOTSET,
        waiter_check_interval_seconds: int | ArgNotSet = NOTSET,
        waiter_max_attempts: int | ArgNotSet = NOTSET,
        waiter_delay: int | ArgNotSet = NOTSET,
        force_stop: bool = False,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        if waiter_check_interval_seconds is NOTSET:
            waiter_delay = 60 if waiter_delay is NOTSET else waiter_delay
        else:
            waiter_delay = waiter_check_interval_seconds if waiter_delay is NOTSET else waiter_delay
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to standardize "
                "naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        if waiter_countdown is NOTSET:
            waiter_max_attempts = 25 if waiter_max_attempts is NOTSET else waiter_max_attempts
        else:
            if waiter_max_attempts is NOTSET:
                # ignoring mypy because it doesn't like ArgNotSet as an operand, but neither variables
                # are of type ArgNotSet at this point.
                waiter_max_attempts = waiter_countdown // waiter_delay  # type: ignore[operator]
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        self.aws_conn_id = aws_conn_id
        self.application_id = application_id
        self.wait_for_completion = False if deferrable else wait_for_completion
        self.waiter_max_attempts = int(waiter_max_attempts)  # type: ignore[arg-type]
        self.waiter_delay = int(waiter_delay)  # type: ignore[arg-type]
        self.force_stop = force_stop
        self.deferrable = deferrable
        super().__init__(**kwargs)
    @cached_property
[docs]    def hook(self) -> EmrServerlessHook:
        """Create and return an EmrServerlessHook."""
        return EmrServerlessHook(aws_conn_id=self.aws_conn_id) 
[docs]    def execute(self, context: Context) -> None:
        self.log.info("Stopping application: %s", self.application_id)
        if self.force_stop:
            count = self.hook.cancel_running_jobs(
                application_id=self.application_id,
                wait_for_completion=False,
            )
            if count > 0:
                self.log.info("now waiting for the %s cancelled job(s) to terminate", count)
                if self.deferrable:
                    self.defer(
                        trigger=EmrServerlessCancelJobsTrigger(
                            application_id=self.application_id,
                            aws_conn_id=self.aws_conn_id,
                            waiter_delay=self.waiter_delay,
                            waiter_max_attempts=self.waiter_max_attempts,
                        ),
                        timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                        method_name="stop_application",
                    )
                self.hook.get_waiter("no_job_running").wait(
                    applicationId=self.application_id,
                    states=list(self.hook.JOB_INTERMEDIATE_STATES.union({"CANCELLING"})),
                    WaiterConfig={
                        "Delay": self.waiter_delay,
                        "MaxAttempts": self.waiter_max_attempts,
                    },
                )
            else:
                self.log.info("no running jobs found with application ID %s", self.application_id)
        self.hook.conn.stop_application(applicationId=self.application_id)
        if self.deferrable:
            self.defer(
                trigger=EmrServerlessStopApplicationTrigger(
                    application_id=self.application_id,
                    aws_conn_id=self.aws_conn_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                ),
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                method_name="execute_complete",
            )
        if self.wait_for_completion:
            waiter = self.hook.get_waiter("serverless_app_stopped")
            wait(
                waiter=waiter,
                waiter_max_attempts=self.waiter_max_attempts,
                waiter_delay=self.waiter_delay,
                args={"applicationId": self.application_id},
                failure_message="Error stopping application",
                status_message="Serverless Application status is",
                status_args=["application.state", "application.stateDetails"],
            )
            self.log.info("EMR serverless application %s stopped successfully", self.application_id) 
[docs]    def stop_application(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None:
            self.log.error("Trigger error: event is None")
            raise AirflowException("Trigger error: event is None")
        elif event["status"] == "success":
            self.hook.conn.stop_application(applicationId=self.application_id)
            self.defer(
                trigger=EmrServerlessStopApplicationTrigger(
                    application_id=self.application_id,
                    aws_conn_id=self.aws_conn_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                ),
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                method_name="execute_complete",
            ) 
[docs]    def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None:
            self.log.error("Trigger error: event is None")
            raise AirflowException("Trigger error: event is None")
        elif event["status"] == "success":
            self.log.info("EMR serverless application %s stopped successfully", self.application_id)  
[docs]class EmrServerlessDeleteApplicationOperator(EmrServerlessStopApplicationOperator):
    """
    Operator to delete EMR Serverless application.
    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:EmrServerlessDeleteApplicationOperator`
    :param application_id: ID of the EMR Serverless application to delete.
    :param wait_for_completion: If true, wait for the Application to be deleted before returning.
        Defaults to True. Note that this operator will always wait for the application to be STOPPED first.
    :param aws_conn_id: AWS connection to use
    :param waiter_countdown: (deprecated) Total amount of time, in seconds, the operator will wait for each
        step of first,the application to be stopped, and then deleted. Defaults to 25 minutes.
    :param waiter_check_interval_seconds: (deprecated) Number of seconds between polling the state
        of the application. Defaults to 60 seconds.
    :waiter_max_attempts: Number of times the waiter should poll the application to check the state.
        Defaults to 25.
    :param waiter_delay: Number of seconds between polling the state of the application.
        Defaults to 60 seconds.
    :param deferrable: If True, the operator will wait asynchronously for application to be deleted.
        This implies waiting for completion. This mode requires aiobotocore module to be installed.
        (default: False, but can be overridden in config file by setting default_deferrable to True)
    :param force_stop: If set to True, any job for that app that is not in a terminal state will be cancelled.
        Otherwise, trying to delete an app with running jobs will return an error.
        If you want to wait for the jobs to finish gracefully, use
        :class:`airflow.providers.amazon.aws.sensors.emr.EmrServerlessJobSensor`
    """
[docs]    template_fields: Sequence[str] = ("application_id",) 
    def __init__(
        self,
        application_id: str,
        wait_for_completion: bool = True,
        aws_conn_id: str = "aws_default",
        waiter_countdown: int | ArgNotSet = NOTSET,
        waiter_check_interval_seconds: int | ArgNotSet = NOTSET,
        waiter_max_attempts: int | ArgNotSet = NOTSET,
        waiter_delay: int | ArgNotSet = NOTSET,
        force_stop: bool = False,
        deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
        **kwargs,
    ):
        if waiter_check_interval_seconds is NOTSET:
            waiter_delay = 60 if waiter_delay is NOTSET else waiter_delay
        else:
            waiter_delay = waiter_check_interval_seconds if waiter_delay is NOTSET else waiter_delay
            warnings.warn(
                "The parameter waiter_check_interval_seconds has been deprecated to standardize "
                "naming conventions.  Please use waiter_delay instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        if waiter_countdown is NOTSET:
            waiter_max_attempts = 25 if waiter_max_attempts is NOTSET else waiter_max_attempts
        else:
            if waiter_max_attempts is NOTSET:
                # ignoring mypy because it doesn't like ArgNotSet as an operand, but neither variables
                # are of type ArgNotSet at this point.
                waiter_max_attempts = waiter_countdown // waiter_delay  # type: ignore[operator]
            warnings.warn(
                "The parameter waiter_countdown has been deprecated to standardize "
                "naming conventions.  Please use waiter_max_attempts instead.  In the "
                "future this will default to None and defer to the waiter's default value."
            )
        self.wait_for_delete_completion = wait_for_completion
        # super stops the app
        super().__init__(
            application_id=application_id,
            # when deleting an app, we always need to wait for it to stop before we can call delete()
            wait_for_completion=True,
            aws_conn_id=aws_conn_id,
            waiter_delay=waiter_delay,
            waiter_max_attempts=waiter_max_attempts,
            force_stop=force_stop,
            **kwargs,
        )
        self.deferrable = deferrable
        self.wait_for_delete_completion = False if deferrable else wait_for_completion
[docs]    def execute(self, context: Context) -> None:
        # super stops the app (or makes sure it's already stopped)
        super().execute(context)
        self.log.info("Now deleting application: %s", self.application_id)
        response = self.hook.conn.delete_application(applicationId=self.application_id)
        if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
            raise AirflowException(f"Application deletion failed: {response}")
        if self.deferrable:
            self.defer(
                trigger=EmrServerlessDeleteApplicationTrigger(
                    application_id=self.application_id,
                    aws_conn_id=self.aws_conn_id,
                    waiter_delay=self.waiter_delay,
                    waiter_max_attempts=self.waiter_max_attempts,
                ),
                timeout=timedelta(seconds=self.waiter_max_attempts * self.waiter_delay),
                method_name="execute_complete",
            )
        elif self.wait_for_delete_completion:
            waiter = self.hook.get_waiter("serverless_app_terminated")
            wait(
                waiter=waiter,
                waiter_max_attempts=self.waiter_max_attempts,
                waiter_delay=self.waiter_delay,
                args={"applicationId": self.application_id},
                failure_message="Error terminating application",
                status_message="Serverless Application status is",
                status_args=["application.state", "application.stateDetails"],
            )
        self.log.info("EMR serverless application deleted") 
[docs]    def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None:
        if event is None:
            self.log.error("Trigger error: event is None")
            raise AirflowException("Trigger error: event is None")
        elif event["status"] == "success":
            self.log.info("EMR serverless application %s deleted successfully", self.application_id)