Source code for tests.system.providers.amazon.aws.example_sagemaker

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
import logging
import subprocess
from datetime import datetime
from tempfile import NamedTemporaryFile

import boto3

from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.operators.python import get_current_context
from airflow.providers.amazon.aws.operators.s3 import (
    S3CreateBucketOperator,
    S3CreateObjectOperator,
    S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.operators.sagemaker import (
    SageMakerAutoMLOperator,
    SageMakerCreateExperimentOperator,
    SageMakerDeleteModelOperator,
    SageMakerModelOperator,
    SageMakerProcessingOperator,
    SageMakerRegisterModelVersionOperator,
    SageMakerTrainingOperator,
    SageMakerTransformOperator,
    SageMakerTuningOperator,
)
from airflow.providers.amazon.aws.sensors.sagemaker import (
    SageMakerAutoMLSensor,
    SageMakerTrainingSensor,
    SageMakerTransformSensor,
    SageMakerTuningSensor,
)
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import ENV_ID_KEY, SystemTestContextBuilder, prune_logs

[docs]logger = logging.getLogger(__name__)
[docs]DAG_ID = "example_sagemaker"
# Externally fetched variables:
[docs]ROLE_ARN_KEY = "ROLE_ARN"
[docs]sys_test_context_task = SystemTestContextBuilder().add_variable(ROLE_ARN_KEY).build()
# The URI of a Docker image for handling KNN model training. # To find the URI of a free Amazon-provided image that can be used, substitute your # desired region in the following link and find the URI under "Registry Path". # https://docs.aws.amazon.com/sagemaker/latest/dg/ecr-us-east-1.html#knn-us-east-1.title # This URI should be in the format of {12-digits}.dkr.ecr.{region}.amazonaws.com/knn
[docs]KNN_IMAGES_BY_REGION = { "us-east-1": "382416733822.dkr.ecr.us-east-1.amazonaws.com/knn:1", "us-west-2": "174872318107.dkr.ecr.us-west-2.amazonaws.com/knn:1", }
[docs]SAMPLE_SIZE = 600
# This script will be the entrypoint for the docker image which will handle preprocessing the raw data # NOTE: The following string must remain dedented as it is being written to a file.
[docs]PREPROCESS_SCRIPT_TEMPLATE = """ import boto3 import numpy as np import pandas as pd def main(): # Load the dataset from {input_path}/input.csv, split it into train/test # subsets, and write them to {output_path}/ for the Processing Operator. data = pd.read_csv('{input_path}/input.csv') # Split into test and train data data_train, data_test = np.split( data.sample(frac=1, random_state=np.random.RandomState()), [int(0.7 * len(data))] ) # Remove the "answers" from the test set data_test.drop(['class'], axis=1, inplace=True) # Write the splits to disk data_train.to_csv('{output_path}/train.csv', index=False, header=False) data_test.to_csv('{output_path}/test.csv', index=False, header=False) print('Preprocessing Done.') if __name__ == "__main__": main() """
def _create_ecr_repository(repo_name): execution_role_arn = boto3.client("sts").get_caller_identity()["Arn"] access_policy = { "Version": "2012-10-17", "Statement": [ { "Sid": "Allow access to the system test execution role", "Effect": "Allow", "Principal": {"AWS": execution_role_arn}, "Action": "ecr:*", } ], } client = boto3.client("ecr") repo = client.create_repository(repositoryName=repo_name)["repository"] client.set_repository_policy(repositoryName=repo["repositoryName"], policyText=json.dumps(access_policy)) return repo["repositoryUri"] def _build_and_upload_docker_image(preprocess_script, repository_uri): """ We need a Docker image with the following requirements: - Has numpy, pandas, requests, and boto3 installed - Has our data preprocessing script mounted and set as the entry point """ with NamedTemporaryFile(mode="w+t") as preprocessing_script, NamedTemporaryFile(mode="w+t") as dockerfile: preprocessing_script.write(preprocess_script) preprocessing_script.flush() dockerfile.write( f""" FROM public.ecr.aws/amazonlinux/amazonlinux COPY {preprocessing_script.name.split('/')[2]} /preprocessing.py ADD credentials /credentials ENV AWS_SHARED_CREDENTIALS_FILE=/credentials RUN yum install python3 pip -y RUN pip3 install boto3 pandas requests CMD [ "python3", "/preprocessing.py"] """ ) dockerfile.flush() ecr_region = repository_uri.split(".")[3] docker_build_and_push_commands = f""" cp /root/.aws/credentials /tmp/credentials && # login to public ecr repo containing amazonlinux image (public login is always on us east 1) aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws && docker build --platform=linux/amd64 -f {dockerfile.name} -t {repository_uri} /tmp && rm /tmp/credentials && # login again, this time to the private repo we created to hold that specific image aws ecr get-login-password --region {ecr_region} | docker login --username AWS --password-stdin {repository_uri} && docker push {repository_uri} """ logger.info("building and uploading docker image for preprocessing...") docker_build = subprocess.Popen( docker_build_and_push_commands, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) _, stderr = docker_build.communicate() if docker_build.returncode != 0: raise RuntimeError( "Failed to prepare docker image for the preprocessing job.\n" "The following error happened while executing the sequence of bash commands:\n" f"{stderr.decode()}" )
[docs]def generate_data() -> str: """generates a very simple csv dataset with headers""" content = "class,x,y\n" # headers for i in range(SAMPLE_SIZE): content += f"{i%100},{i},{SAMPLE_SIZE-i}\n" return content
@task
[docs]def set_up(env_id, role_arn): bucket_name = f"{env_id}-sagemaker-example" ecr_repository_name = f"{env_id}-repo" model_name = f"{env_id}-KNN-model" processing_job_name = f"{env_id}-processing" training_job_name = f"{env_id}-train" transform_job_name = f"{env_id}-transform" tuning_job_name = f"{env_id}-tune" model_package_group_name = f"{env_id}-group" auto_ml_job_name = f"{env_id}-automl" experiment_name = f"{env_id}-experiment" input_data_S3_key = f"{env_id}/processed-input-data" prediction_output_s3_key = f"{env_id}/transform" processing_local_input_path = "/opt/ml/processing/input" processing_local_output_path = "/opt/ml/processing/output" raw_data_s3_key = f"{env_id}/preprocessing/input.csv" training_output_s3_key = f"{env_id}/results" ecr_repository_uri = _create_ecr_repository(ecr_repository_name) region = boto3.session.Session().region_name try: knn_image_uri = KNN_IMAGES_BY_REGION[region] except KeyError: raise KeyError( f"Region name {region} does not have a known KNN " f"Image URI. Please add the region and URI following " f"the directions at the top of the system testfile " ) resource_config = { "InstanceCount": 1, "InstanceType": "ml.m5.large", "VolumeSizeInGB": 1, } input_data_uri = f"s3://{bucket_name}/{raw_data_s3_key}" processing_config = { "ProcessingJobName": processing_job_name, "ProcessingInputs": [ { "InputName": "input", "AppManaged": False, "S3Input": { "S3Uri": input_data_uri, "LocalPath": processing_local_input_path, "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", "S3CompressionType": "None", }, }, ], "ProcessingOutputConfig": { "Outputs": [ { "OutputName": "output", "S3Output": { "S3Uri": f"s3://{bucket_name}/{input_data_S3_key}", "LocalPath": processing_local_output_path, "S3UploadMode": "EndOfJob", }, "AppManaged": False, } ] }, "ProcessingResources": { "ClusterConfig": resource_config, }, "StoppingCondition": {"MaxRuntimeInSeconds": 600}, "AppSpecification": { "ImageUri": ecr_repository_uri, }, "RoleArn": role_arn, } training_data_source = { "CompressionType": "None", "ContentType": "text/csv", "DataSource": { "S3DataSource": { "S3DataDistributionType": "FullyReplicated", "S3DataType": "S3Prefix", "S3Uri": f"s3://{bucket_name}/{input_data_S3_key}/train.csv", } }, } training_config = { "AlgorithmSpecification": { "TrainingImage": knn_image_uri, "TrainingInputMode": "File", }, "HyperParameters": { "predictor_type": "classifier", "feature_dim": "2", "k": "3", "sample_size": str(SAMPLE_SIZE), }, "InputDataConfig": [ { "ChannelName": "train", **training_data_source, } ], "OutputDataConfig": {"S3OutputPath": f"s3://{bucket_name}/{training_output_s3_key}/"}, "ExperimentConfig": {"ExperimentName": experiment_name}, "ResourceConfig": resource_config, "RoleArn": role_arn, "StoppingCondition": {"MaxRuntimeInSeconds": 600}, "TrainingJobName": training_job_name, } model_trained_weights = ( f"s3://{bucket_name}/{training_output_s3_key}/{training_job_name}/output/model.tar.gz" ) model_config = { "ExecutionRoleArn": role_arn, "ModelName": model_name, "PrimaryContainer": { "Mode": "SingleModel", "Image": knn_image_uri, "ModelDataUrl": model_trained_weights, }, } tuning_config = { "HyperParameterTuningJobName": tuning_job_name, "HyperParameterTuningJobConfig": { "Strategy": "Bayesian", "HyperParameterTuningJobObjective": { "MetricName": "test:accuracy", "Type": "Maximize", }, "ResourceLimits": { "MaxNumberOfTrainingJobs": 10, "MaxParallelTrainingJobs": 10, }, "ParameterRanges": { "CategoricalParameterRanges": [], "IntegerParameterRanges": [ # Set the min and max values of the hyperparameters you want to tune. { "Name": "k", "MinValue": "1", "MaxValue": str(SAMPLE_SIZE), }, { "Name": "sample_size", "MinValue": "1", "MaxValue": str(SAMPLE_SIZE), }, ], }, }, "TrainingJobDefinition": { "StaticHyperParameters": { "predictor_type": "classifier", "feature_dim": "2", }, "AlgorithmSpecification": {"TrainingImage": knn_image_uri, "TrainingInputMode": "File"}, "InputDataConfig": [ { "ChannelName": "train", **training_data_source, }, { "ChannelName": "test", **training_data_source, }, ], "OutputDataConfig": {"S3OutputPath": f"s3://{bucket_name}/{training_output_s3_key}"}, "ResourceConfig": resource_config, "RoleArn": role_arn, "StoppingCondition": {"MaxRuntimeInSeconds": 600}, }, } transform_config = { "TransformJobName": transform_job_name, "TransformInput": { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": f"s3://{bucket_name}/{input_data_S3_key}/test.csv", } }, "SplitType": "Line", "ContentType": "text/csv", }, "TransformOutput": {"S3OutputPath": f"s3://{bucket_name}/{prediction_output_s3_key}"}, "TransformResources": { "InstanceCount": 1, "InstanceType": "ml.m5.large", }, "ModelName": model_name, } preprocess_script = PREPROCESS_SCRIPT_TEMPLATE.format( input_path=processing_local_input_path, output_path=processing_local_output_path ) _build_and_upload_docker_image(preprocess_script, ecr_repository_uri) ti = get_current_context()["ti"] ti.xcom_push(key="docker_image", value=ecr_repository_uri) ti.xcom_push(key="bucket_name", value=bucket_name) ti.xcom_push(key="raw_data_s3_key", value=raw_data_s3_key) ti.xcom_push(key="ecr_repository_name", value=ecr_repository_name) ti.xcom_push(key="processing_config", value=processing_config) ti.xcom_push(key="input_data_uri", value=input_data_uri) ti.xcom_push(key="output_data_uri", value=f"s3://{bucket_name}/{training_output_s3_key}") ti.xcom_push(key="training_config", value=training_config) ti.xcom_push(key="training_job_name", value=training_job_name) ti.xcom_push(key="model_package_group_name", value=model_package_group_name) ti.xcom_push(key="auto_ml_job_name", value=auto_ml_job_name) ti.xcom_push(key="experiment_name", value=experiment_name) ti.xcom_push(key="model_config", value=model_config) ti.xcom_push(key="model_name", value=model_name) ti.xcom_push(key="inference_code_image", value=knn_image_uri) ti.xcom_push(key="model_trained_weights", value=model_trained_weights) ti.xcom_push(key="tuning_config", value=tuning_config) ti.xcom_push(key="tuning_job_name", value=tuning_job_name) ti.xcom_push(key="transform_config", value=transform_config) ti.xcom_push(key="transform_job_name", value=transform_job_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_ecr_repository(repository_name): client = boto3.client("ecr") # All images must be removed from the repo before it can be deleted. image_ids = client.list_images(repositoryName=repository_name)["imageIds"] client.batch_delete_image( repositoryName=repository_name, imageIds=[{"imageDigest": image["imageDigest"]} for image in image_ids], ) client.delete_repository(repositoryName=repository_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_model_group(group_name, model_version_arn): sgmk_client = boto3.client("sagemaker") # need to destroy model registered in group first sgmk_client.delete_model_package(ModelPackageName=model_version_arn) sgmk_client.delete_model_package_group(ModelPackageGroupName=group_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_experiments(experiment_names): sgmk_client = boto3.client("sagemaker") for experiment in experiment_names: trials = sgmk_client.list_trials(ExperimentName=experiment) trials_names = [s["TrialName"] for s in trials["TrialSummaries"]] for trial in trials_names: components = sgmk_client.list_trial_components(TrialName=trial) components_names = [s["TrialComponentName"] for s in components["TrialComponentSummaries"]] for component in components_names: sgmk_client.disassociate_trial_component(TrialComponentName=component, TrialName=trial) sgmk_client.delete_trial_component(TrialComponentName=component) sgmk_client.delete_trial(TrialName=trial) sgmk_client.delete_experiment(ExperimentName=experiment)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_docker_image(image_name): docker_build = subprocess.Popen( f"docker rmi {image_name}", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) _, stderr = docker_build.communicate() if docker_build.returncode != 0: logger.error( "Failed to delete local docker image. " "Run 'docker images' to see if you need to clean it yourself.\nerror message: %s", stderr, )
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), tags=["example"], catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context[ENV_ID_KEY] test_setup = set_up( env_id=env_id, role_arn=test_context[ROLE_ARN_KEY], ) create_bucket = S3CreateBucketOperator( task_id="create_bucket", bucket_name=test_setup["bucket_name"], ) upload_dataset = S3CreateObjectOperator( task_id="upload_dataset", s3_bucket=test_setup["bucket_name"], s3_key=test_setup["raw_data_s3_key"], data=generate_data(), replace=True, ) # [START howto_operator_sagemaker_auto_ml] automl = SageMakerAutoMLOperator( task_id="auto_ML", job_name=test_setup["auto_ml_job_name"], s3_input=test_setup["input_data_uri"], target_attribute="class", s3_output=test_setup["output_data_uri"], role_arn=test_context[ROLE_ARN_KEY], time_limit=30, # will stop the job before it can do anything, but it's not the point here ) # [END howto_operator_sagemaker_auto_ml] automl.wait_for_completion = False # just to be able to test the sensor next # [START howto_sensor_sagemaker_auto_ml] await_automl = SageMakerAutoMLSensor(job_name=test_setup["auto_ml_job_name"], task_id="await_auto_ML") # [END howto_sensor_sagemaker_auto_ml] await_automl.poke_interval = 10 # [START howto_operator_sagemaker_experiment] create_experiment = SageMakerCreateExperimentOperator( task_id="create_experiment", name=test_setup["experiment_name"] ) # [END howto_operator_sagemaker_experiment] # [START howto_operator_sagemaker_processing] preprocess_raw_data = SageMakerProcessingOperator( task_id="preprocess_raw_data", config=test_setup["processing_config"], ) # [END howto_operator_sagemaker_processing] # [START howto_operator_sagemaker_training] train_model = SageMakerTrainingOperator( task_id="train_model", config=test_setup["training_config"], ) # [END howto_operator_sagemaker_training] # SageMakerTrainingOperator waits by default, setting as False to test the Sensor below. train_model.wait_for_completion = False # [START howto_sensor_sagemaker_training] await_training = SageMakerTrainingSensor( task_id="await_training", job_name=test_setup["training_job_name"], ) # [END howto_sensor_sagemaker_training] # [START howto_operator_sagemaker_model] create_model = SageMakerModelOperator( task_id="create_model", config=test_setup["model_config"], ) # [END howto_operator_sagemaker_model] # [START howto_operator_sagemaker_register] register_model = SageMakerRegisterModelVersionOperator( task_id="register_model", image_uri=test_setup["inference_code_image"], model_url=test_setup["model_trained_weights"], package_group_name=test_setup["model_package_group_name"], ) # [END howto_operator_sagemaker_register] # [START howto_operator_sagemaker_tuning] tune_model = SageMakerTuningOperator( task_id="tune_model", config=test_setup["tuning_config"], ) # [END howto_operator_sagemaker_tuning] # SageMakerTuningOperator waits by default, setting as False to test the Sensor below. tune_model.wait_for_completion = False # [START howto_sensor_sagemaker_tuning] await_tuning = SageMakerTuningSensor( task_id="await_tuning", job_name=test_setup["tuning_job_name"], ) # [END howto_sensor_sagemaker_tuning] # [START howto_operator_sagemaker_transform] test_model = SageMakerTransformOperator( task_id="test_model", config=test_setup["transform_config"], ) # [END howto_operator_sagemaker_transform] # SageMakerTransformOperator waits by default, setting as False to test the Sensor below. test_model.wait_for_completion = False # [START howto_sensor_sagemaker_transform] await_transform = SageMakerTransformSensor( task_id="await_transform", job_name=test_setup["transform_job_name"], ) # [END howto_sensor_sagemaker_transform] # [START howto_operator_sagemaker_delete_model] delete_model = SageMakerDeleteModelOperator( task_id="delete_model", config={"ModelName": test_setup["model_name"]}, ) # [END howto_operator_sagemaker_delete_model] delete_model.trigger_rule = TriggerRule.ALL_DONE delete_bucket = S3DeleteBucketOperator( task_id="delete_bucket", trigger_rule=TriggerRule.ALL_DONE, bucket_name=test_setup["bucket_name"], force_delete=True, ) log_cleanup = prune_logs( [ # Format: ('log group name', 'log stream prefix') ("/aws/sagemaker/ProcessingJobs", env_id), ("/aws/sagemaker/TrainingJobs", env_id), ("/aws/sagemaker/TransformJobs", env_id), ] ) chain( # TEST SETUP test_context, test_setup, create_bucket, upload_dataset, # TEST BODY automl, await_automl, create_experiment, preprocess_raw_data, train_model, await_training, create_model, register_model, tune_model, await_tuning, test_model, await_transform, # TEST TEARDOWN delete_ecr_repository(test_setup["ecr_repository_name"]), delete_model_group(test_setup["model_package_group_name"], register_model.output), delete_model, delete_bucket, delete_experiments( [ test_setup["experiment_name"], f"{test_setup['auto_ml_job_name']}-aws-auto-ml-job", f"{test_setup['tuning_job_name']}-aws-tuning-job", ] ), delete_docker_image(test_setup["docker_image"]), log_cleanup, ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?