# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import logging
from datetime import datetime
import boto3
from airflow import DAG
from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.providers.amazon.aws.operators.batch import BatchCreateComputeEnvironmentOperator, BatchOperator
from airflow.providers.amazon.aws.sensors.batch import (
BatchComputeEnvironmentSensor,
BatchJobQueueSensor,
BatchSensor,
)
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import (
ENV_ID_KEY,
SystemTestContextBuilder,
prune_logs,
split_string,
)
[docs]log = logging.getLogger(__name__)
[docs]DAG_ID = "example_batch"
# Externally fetched variables:
[docs]ROLE_ARN_KEY = "ROLE_ARN"
[docs]SECURITY_GROUPS_KEY = "SECURITY_GROUPS"
[docs]sys_test_context_task = (
SystemTestContextBuilder()
.add_variable(ROLE_ARN_KEY)
.add_variable(SUBNETS_KEY)
.add_variable(SECURITY_GROUPS_KEY)
.build()
)
[docs]JOB_OVERRIDES: dict = {}
@task
[docs]def create_job_definition(role_arn, job_definition_name):
boto3.client("batch").register_job_definition(
type="container",
containerProperties={
"command": [
"sleep",
"2",
],
"executionRoleArn": role_arn,
"image": "busybox",
"resourceRequirements": [
{"value": "1", "type": "VCPU"},
{"value": "2048", "type": "MEMORY"},
],
"networkConfiguration": {
"assignPublicIp": "ENABLED",
},
},
jobDefinitionName=job_definition_name,
platformCapabilities=["FARGATE"],
)
@task
[docs]def create_job_queue(job_compute_environment_name, job_queue_name):
boto3.client("batch").create_job_queue(
computeEnvironmentOrder=[
{
"computeEnvironment": job_compute_environment_name,
"order": 1,
},
],
jobQueueName=job_queue_name,
priority=1,
state="ENABLED",
)
# Only describe the job if a previous task failed, to help diagnose
@task(trigger_rule=TriggerRule.ONE_FAILED)
[docs]def describe_job(job_id):
client = boto3.client("batch")
response = client.describe_jobs(jobs=[job_id])
log.info("Describing the job %s for debugging purposes", job_id)
log.info(response["jobs"])
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_job_definition(job_definition_name):
client = boto3.client("batch")
response = client.describe_job_definitions(
jobDefinitionName=job_definition_name,
status="ACTIVE",
)
for job_definition in response["jobDefinitions"]:
client.deregister_job_definition(
jobDefinition=job_definition["jobDefinitionArn"],
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def disable_compute_environment(job_compute_environment_name):
boto3.client("batch").update_compute_environment(
computeEnvironment=job_compute_environment_name,
state="DISABLED",
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_compute_environment(job_compute_environment_name):
boto3.client("batch").delete_compute_environment(
computeEnvironment=job_compute_environment_name,
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def disable_job_queue(job_queue_name):
boto3.client("batch").update_job_queue(
jobQueue=job_queue_name,
state="DISABLED",
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_job_queue(job_queue_name):
boto3.client("batch").delete_job_queue(
jobQueue=job_queue_name,
)
with DAG(
dag_id=DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
tags=["example"],
catchup=False,
) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context[ENV_ID_KEY]
batch_job_name: str = f"{env_id}-test-job"
batch_job_definition_name: str = f"{env_id}-test-job-definition"
batch_job_compute_environment_name: str = f"{env_id}-test-job-compute-environment"
batch_job_queue_name: str = f"{env_id}-test-job-queue"
security_groups = split_string(test_context[SECURITY_GROUPS_KEY])
subnets = split_string(test_context[SUBNETS_KEY])
# [START howto_operator_batch_create_compute_environment]
create_compute_environment = BatchCreateComputeEnvironmentOperator(
task_id="create_compute_environment",
compute_environment_name=batch_job_compute_environment_name,
environment_type="MANAGED",
state="ENABLED",
compute_resources={
"type": "FARGATE",
"maxvCpus": 10,
"securityGroupIds": security_groups,
"subnets": subnets,
},
)
# [END howto_operator_batch_create_compute_environment]
# [START howto_sensor_batch_compute_environment]
wait_for_compute_environment_valid = BatchComputeEnvironmentSensor(
task_id="wait_for_compute_environment_valid",
compute_environment=batch_job_compute_environment_name,
)
# [END howto_sensor_batch_compute_environment]
wait_for_compute_environment_valid.poke_interval = 1
# [START howto_sensor_batch_job_queue]
wait_for_job_queue_valid = BatchJobQueueSensor(
task_id="wait_for_job_queue_valid",
job_queue=batch_job_queue_name,
)
# [END howto_sensor_batch_job_queue]
wait_for_job_queue_valid.poke_interval = 1
# [START howto_operator_batch]
submit_batch_job = BatchOperator(
task_id="submit_batch_job",
job_name=batch_job_name,
job_queue=batch_job_queue_name,
job_definition=batch_job_definition_name,
overrides=JOB_OVERRIDES,
)
# [END howto_operator_batch]
# BatchOperator waits by default, setting as False to test the Sensor below.
submit_batch_job.wait_for_completion = False
# [START howto_sensor_batch]
wait_for_batch_job = BatchSensor(
task_id="wait_for_batch_job",
job_id=submit_batch_job.output,
)
# [END howto_sensor_batch]
wait_for_batch_job.poke_interval = 10
wait_for_compute_environment_disabled = BatchComputeEnvironmentSensor(
task_id="wait_for_compute_environment_disabled",
compute_environment=batch_job_compute_environment_name,
poke_interval=1,
)
wait_for_job_queue_modified = BatchJobQueueSensor(
task_id="wait_for_job_queue_modified",
job_queue=batch_job_queue_name,
poke_interval=1,
)
wait_for_job_queue_deleted = BatchJobQueueSensor(
task_id="wait_for_job_queue_deleted",
job_queue=batch_job_queue_name,
treat_non_existing_as_deleted=True,
poke_interval=10,
)
log_cleanup = prune_logs(
[
# Format: ('log group name', 'log stream prefix')
("/aws/batch/job", env_id)
],
)
chain(
# TEST SETUP
test_context,
security_groups,
subnets,
create_job_definition(test_context[ROLE_ARN_KEY], batch_job_definition_name),
# TEST BODY
create_compute_environment,
wait_for_compute_environment_valid,
# ``create_job_queue`` is part of test setup but need the compute-environment to be created before
create_job_queue(batch_job_compute_environment_name, batch_job_queue_name),
wait_for_job_queue_valid,
submit_batch_job,
wait_for_batch_job,
# TEST TEARDOWN
describe_job(submit_batch_job.output),
disable_job_queue(batch_job_queue_name),
wait_for_job_queue_modified,
delete_job_queue(batch_job_queue_name),
wait_for_job_queue_deleted,
disable_compute_environment(batch_job_compute_environment_name),
wait_for_compute_environment_disabled,
delete_compute_environment(batch_job_compute_environment_name),
delete_job_definition(batch_job_definition_name),
log_cleanup,
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)