Source code for airflow.providers.amazon.aws.operators.dms

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Sequence

from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.dms import DmsHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class DmsCreateTaskOperator(BaseOperator): """ Creates AWS DMS replication task. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DmsCreateTaskOperator` :param replication_task_id: Replication task id :param source_endpoint_arn: Source endpoint ARN :param target_endpoint_arn: Target endpoint ARN :param replication_instance_arn: Replication instance ARN :param table_mappings: Table mappings :param migration_type: Migration type ('full-load'|'cdc'|'full-load-and-cdc'), full-load by default. :param create_task_kwargs: Extra arguments for DMS replication task creation. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). """
[docs] template_fields: Sequence[str] = ( "replication_task_id", "source_endpoint_arn", "target_endpoint_arn", "replication_instance_arn", "table_mappings", "migration_type", "create_task_kwargs", )
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers = { "table_mappings": "json", "create_task_kwargs": "json", }
def __init__( self, *, replication_task_id: str, source_endpoint_arn: str, target_endpoint_arn: str, replication_instance_arn: str, table_mappings: dict, migration_type: str = "full-load", create_task_kwargs: dict | None = None, aws_conn_id: str = "aws_default", **kwargs, ): super().__init__(**kwargs) self.replication_task_id = replication_task_id self.source_endpoint_arn = source_endpoint_arn self.target_endpoint_arn = target_endpoint_arn self.replication_instance_arn = replication_instance_arn self.migration_type = migration_type self.table_mappings = table_mappings self.create_task_kwargs = create_task_kwargs or {} self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context): """ Creates AWS DMS replication task from Airflow. :return: replication task arn """ dms_hook = DmsHook(aws_conn_id=self.aws_conn_id) task_arn = dms_hook.create_replication_task( replication_task_id=self.replication_task_id, source_endpoint_arn=self.source_endpoint_arn, target_endpoint_arn=self.target_endpoint_arn, replication_instance_arn=self.replication_instance_arn, migration_type=self.migration_type, table_mappings=self.table_mappings, **self.create_task_kwargs, ) self.log.info("DMS replication task(%s) is ready.", self.replication_task_id) return task_arn
[docs]class DmsDeleteTaskOperator(BaseOperator): """ Deletes AWS DMS replication task. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DmsDeleteTaskOperator` :param replication_task_arn: Replication task ARN :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). """
[docs] template_fields: Sequence[str] = ("replication_task_arn",)
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers: dict[str, str] = {}
def __init__( self, *, replication_task_arn: str | None = None, aws_conn_id: str = "aws_default", **kwargs, ): super().__init__(**kwargs) self.replication_task_arn = replication_task_arn self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context): """ Deletes AWS DMS replication task from Airflow. :return: replication task arn """ dms_hook = DmsHook(aws_conn_id=self.aws_conn_id) dms_hook.delete_replication_task(replication_task_arn=self.replication_task_arn) self.log.info("DMS replication task(%s) has been deleted.", self.replication_task_arn)
[docs]class DmsDescribeTasksOperator(BaseOperator): """ Describes AWS DMS replication tasks. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DmsDescribeTasksOperator` :param describe_tasks_kwargs: Describe tasks command arguments :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). """
[docs] template_fields: Sequence[str] = ("describe_tasks_kwargs",)
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers: dict[str, str] = {"describe_tasks_kwargs": "json"}
def __init__( self, *, describe_tasks_kwargs: dict | None = None, aws_conn_id: str = "aws_default", **kwargs, ): super().__init__(**kwargs) self.describe_tasks_kwargs = describe_tasks_kwargs or {} self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context) -> tuple[str | None, list]: """ Describes AWS DMS replication tasks from Airflow. :return: Marker and list of replication tasks """ dms_hook = DmsHook(aws_conn_id=self.aws_conn_id) return dms_hook.describe_replication_tasks(**self.describe_tasks_kwargs)
[docs]class DmsStartTaskOperator(BaseOperator): """ Starts AWS DMS replication task. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DmsStartTaskOperator` :param replication_task_arn: Replication task ARN :param start_replication_task_type: Replication task start type (default='start-replication') ('start-replication'|'resume-processing'|'reload-target') :param start_task_kwargs: Extra start replication task arguments :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). """
[docs] template_fields: Sequence[str] = ( "replication_task_arn", "start_replication_task_type", "start_task_kwargs", )
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers = {"start_task_kwargs": "json"}
def __init__( self, *, replication_task_arn: str, start_replication_task_type: str = "start-replication", start_task_kwargs: dict | None = None, aws_conn_id: str = "aws_default", **kwargs, ): super().__init__(**kwargs) self.replication_task_arn = replication_task_arn self.start_replication_task_type = start_replication_task_type self.start_task_kwargs = start_task_kwargs or {} self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context): """ Starts AWS DMS replication task from Airflow. :return: replication task arn """ dms_hook = DmsHook(aws_conn_id=self.aws_conn_id) dms_hook.start_replication_task( replication_task_arn=self.replication_task_arn, start_replication_task_type=self.start_replication_task_type, **self.start_task_kwargs, ) self.log.info("DMS replication task(%s) is starting.", self.replication_task_arn)
[docs]class DmsStopTaskOperator(BaseOperator): """ Stops AWS DMS replication task. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DmsStopTaskOperator` :param replication_task_arn: Replication task ARN :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). """
[docs] template_fields: Sequence[str] = ("replication_task_arn",)
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers: dict[str, str] = {}
def __init__( self, *, replication_task_arn: str | None = None, aws_conn_id: str = "aws_default", **kwargs, ): super().__init__(**kwargs) self.replication_task_arn = replication_task_arn self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context): """ Stops AWS DMS replication task from Airflow. :return: replication task arn """ dms_hook = DmsHook(aws_conn_id=self.aws_conn_id) dms_hook.stop_replication_task(replication_task_arn=self.replication_task_arn) self.log.info("DMS replication task(%s) is stopping.", self.replication_task_arn)

Was this entry helpful?