Source code for airflow.providers.amazon.aws.operators.neptune

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Sequence

from airflow.configuration import conf
from airflow.providers.amazon.aws.hooks.neptune import NeptuneHook
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
from airflow.providers.amazon.aws.triggers.neptune import (
    NeptuneClusterAvailableTrigger,
    NeptuneClusterStoppedTrigger,
)
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class NeptuneStartDbClusterOperator(AwsBaseOperator[NeptuneHook]): """Starts an Amazon Neptune DB cluster. Amazon Neptune Database is a serverless graph database designed for superior scalability and availability. Neptune Database provides built-in security, continuous backups, and integrations with other AWS services .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:NeptuneStartDbClusterOperator` :param db_cluster_id: The DB cluster identifier of the Neptune DB cluster to be started. :param wait_for_completion: Whether to wait for the cluster to start. (default: True) :param deferrable: If True, the operator will wait asynchronously for the cluster to start. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param waiter_delay: Time in seconds to wait between status checks. :param waiter_max_attempts: Maximum number of attempts to check for job completion. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html :return: dictionary with Neptune cluster id """
[docs] aws_hook_class = NeptuneHook
[docs] template_fields: Sequence[str] = aws_template_fields("cluster_id")
def __init__( self, db_cluster_id: str, wait_for_completion: bool = True, waiter_delay: int = 30, waiter_max_attempts: int = 60, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs) self.cluster_id = db_cluster_id self.wait_for_completion = wait_for_completion self.deferrable = deferrable self.delay = waiter_delay self.max_attempts = waiter_max_attempts
[docs] def execute(self, context: Context) -> dict[str, str]: self.log.info("Starting Neptune cluster: %s", self.cluster_id) # Check to make sure the cluster is not already available. status = self.hook.get_cluster_status(self.cluster_id) if status.lower() in NeptuneHook.AVAILABLE_STATES: self.log.info("Neptune cluster %s is already available.", self.cluster_id) return {"db_cluster_id": self.cluster_id} resp = self.hook.conn.start_db_cluster(DBClusterIdentifier=self.cluster_id) status = resp.get("DBClusters", {}).get("Status", "Unknown") if self.deferrable: self.log.info("Deferring for cluster start: %s", self.cluster_id) self.defer( trigger=NeptuneClusterAvailableTrigger( aws_conn_id=self.aws_conn_id, db_cluster_id=self.cluster_id, waiter_delay=self.delay, waiter_max_attempts=self.max_attempts, ), method_name="execute_complete", ) elif self.wait_for_completion: self.log.info("Waiting for Neptune cluster %s to start.", self.cluster_id) self.hook.wait_for_cluster_availability(self.cluster_id, self.delay, self.max_attempts) return {"db_cluster_id": self.cluster_id}
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> dict[str, str]: status = "" cluster_id = "" if event: status = event.get("status", "") cluster_id = event.get("cluster_id", "") self.log.info("Neptune cluster %s available with status: %s", cluster_id, status) return {"db_cluster_id": cluster_id}
[docs]class NeptuneStopDbClusterOperator(AwsBaseOperator[NeptuneHook]): """ Stops an Amazon Neptune DB cluster. Amazon Neptune Database is a serverless graph database designed for superior scalability and availability. Neptune Database provides built-in security, continuous backups, and integrations with other AWS services .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:NeptuneStartDbClusterOperator` :param db_cluster_id: The DB cluster identifier of the Neptune DB cluster to be stopped. :param wait_for_completion: Whether to wait for cluster to stop. (default: True) :param deferrable: If True, the operator will wait asynchronously for the cluster to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param waiter_delay: Time in seconds to wait between status checks. :param waiter_max_attempts: Maximum number of attempts to check for job completion. :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html :return: dictionary with Neptune cluster id """
[docs] aws_hook_class = NeptuneHook
[docs] template_fields: Sequence[str] = aws_template_fields("cluster_id")
def __init__( self, db_cluster_id: str, wait_for_completion: bool = True, waiter_delay: int = 30, waiter_max_attempts: int = 60, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs) self.cluster_id = db_cluster_id self.wait_for_completion = wait_for_completion self.deferrable = deferrable self.delay = waiter_delay self.max_attempts = waiter_max_attempts
[docs] def execute(self, context: Context) -> dict[str, str]: self.log.info("Stopping Neptune cluster: %s", self.cluster_id) # Check to make sure the cluster is not already stopped. status = self.hook.get_cluster_status(self.cluster_id) if status.lower() in NeptuneHook.STOPPED_STATES: self.log.info("Neptune cluster %s is already stopped.", self.cluster_id) return {"db_cluster_id": self.cluster_id} resp = self.hook.conn.stop_db_cluster(DBClusterIdentifier=self.cluster_id) status = resp.get("DBClusters", {}).get("Status", "Unknown") if self.deferrable: self.log.info("Deferring for cluster stop: %s", self.cluster_id) self.defer( trigger=NeptuneClusterStoppedTrigger( aws_conn_id=self.aws_conn_id, db_cluster_id=self.cluster_id, waiter_delay=self.delay, waiter_max_attempts=self.max_attempts, ), method_name="execute_complete", ) elif self.wait_for_completion: self.log.info("Waiting for Neptune cluster %s to start.", self.cluster_id) self.hook.wait_for_cluster_stopped(self.cluster_id, self.delay, self.max_attempts) return {"db_cluster_id": self.cluster_id}
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> dict[str, str]: status = "" cluster_id = "" if event: status = event.get("status", "") cluster_id = event.get("cluster_id", "") self.log.info("Neptune cluster %s stopped with status: %s", cluster_id, status) return {"db_cluster_id": cluster_id}

Was this entry helpful?