#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.redshift_data import RedshiftDataHook
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
from airflow.providers.amazon.aws.triggers.redshift_data import RedshiftDataTrigger
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields
if TYPE_CHECKING:
from mypy_boto3_redshift_data.type_defs import GetStatementResultResponseTypeDef
from airflow.utils.context import Context
[docs]class RedshiftDataOperator(AwsBaseOperator[RedshiftDataHook]):
"""
Executes SQL Statements against an Amazon Redshift cluster using Redshift Data.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:RedshiftDataOperator`
:param database: the name of the database
:param sql: the SQL statement or list of SQL statement to run
:param cluster_identifier: unique identifier of a cluster
:param db_user: the database username
:param parameters: the parameters for the SQL statement
:param secret_arn: the name or ARN of the secret that enables db access
:param statement_name: the name of the SQL statement
:param with_event: indicates whether to send an event to EventBridge
:param wait_for_completion: indicates whether to wait for a result, if True wait, if False don't wait
:param poll_interval: how often in seconds to check the query status
:param return_sql_result: if True will return the result of an SQL statement,
if False (default) will return statement ID
:param workgroup_name: name of the Redshift Serverless workgroup. Mutually exclusive with
`cluster_identifier`. Specify this parameter to query Redshift Serverless. More info
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-serverless.html
:param aws_conn_id: The Airflow connection used for AWS credentials.
If this is ``None`` or empty then the default boto3 behaviour is used. If
running Airflow in a distributed manner and aws_conn_id is None or
empty, then default boto3 configuration would be used (and must be
maintained on each worker node).
:param region_name: AWS region_name. If not specified then the default boto3 behaviour is used.
:param verify: Whether or not to verify SSL certificates. See:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
:param botocore_config: Configuration dictionary (key-values) for botocore client. See:
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
"""
[docs] aws_hook_class = RedshiftDataHook
[docs] template_fields = aws_template_fields(
"cluster_identifier",
"database",
"sql",
"db_user",
"parameters",
"statement_name",
"workgroup_name",
)
[docs] template_ext = (".sql",)
[docs] template_fields_renderers = {"sql": "sql"}
[docs] statement_id: str | None
def __init__(
self,
database: str,
sql: str | list,
cluster_identifier: str | None = None,
db_user: str | None = None,
parameters: list | None = None,
secret_arn: str | None = None,
statement_name: str | None = None,
with_event: bool = False,
wait_for_completion: bool = True,
poll_interval: int = 10,
return_sql_result: bool = False,
workgroup_name: str | None = None,
deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False),
**kwargs,
) -> None:
super().__init__(**kwargs)
self.database = database
self.sql = sql
self.cluster_identifier = cluster_identifier
self.workgroup_name = workgroup_name
self.db_user = db_user
self.parameters = parameters
self.secret_arn = secret_arn
self.statement_name = statement_name
self.with_event = with_event
self.wait_for_completion = wait_for_completion
if poll_interval > 0:
self.poll_interval = poll_interval
else:
self.log.warning(
"Invalid poll_interval:",
poll_interval,
)
self.return_sql_result = return_sql_result
self.statement_id: str | None = None
self.deferrable = deferrable
[docs] def execute(self, context: Context) -> GetStatementResultResponseTypeDef | str:
"""Execute a statement against Amazon Redshift."""
self.log.info("Executing statement: %s", self.sql)
# Set wait_for_completion to False so that it waits for the status in the deferred task.
wait_for_completion = self.wait_for_completion
if self.deferrable and self.wait_for_completion:
self.wait_for_completion = False
self.statement_id = self.hook.execute_query(
database=self.database,
sql=self.sql,
cluster_identifier=self.cluster_identifier,
workgroup_name=self.workgroup_name,
db_user=self.db_user,
parameters=self.parameters,
secret_arn=self.secret_arn,
statement_name=self.statement_name,
with_event=self.with_event,
wait_for_completion=wait_for_completion,
poll_interval=self.poll_interval,
)
if self.deferrable:
is_finished = self.hook.check_query_is_finished(self.statement_id)
if not is_finished:
self.defer(
timeout=self.execution_timeout,
trigger=RedshiftDataTrigger(
statement_id=self.statement_id,
task_id=self.task_id,
poll_interval=self.poll_interval,
aws_conn_id=self.aws_conn_id,
region_name=self.region_name,
verify=self.verify,
botocore_config=self.botocore_config,
),
method_name="execute_complete",
)
if self.return_sql_result:
result = self.hook.conn.get_statement_result(Id=self.statement_id)
self.log.debug("Statement result: %s", result)
return result
else:
return self.statement_id
[docs] def execute_complete(
self, context: Context, event: dict[str, Any] | None = None
) -> GetStatementResultResponseTypeDef | str:
if event is None:
err_msg = "Trigger error: event is None"
self.log.info(err_msg)
raise AirflowException(err_msg)
if event["status"] == "error":
msg = f"context: {context}, error message: {event['message']}"
raise AirflowException(msg)
statement_id = event["statement_id"]
if not statement_id:
raise AirflowException("statement_id should not be empty.")
self.log.info("%s completed successfully.", self.task_id)
if self.return_sql_result:
result = self.hook.conn.get_statement_result(Id=statement_id)
self.log.debug("Statement result: %s", result)
return result
return statement_id
[docs] def on_kill(self) -> None:
"""Cancel the submitted redshift query."""
if self.statement_id:
self.log.info("Received a kill signal.")
self.log.info("Stopping Query with statementId - %s", self.statement_id)
try:
self.hook.conn.cancel_statement(Id=self.statement_id)
except Exception as ex:
self.log.error("Unable to cancel query. Exiting. %s", ex)