Source code for airflow.providers.amazon.aws.operators.emr

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import ast
import warnings
from typing import TYPE_CHECKING, Any, Sequence
from uuid import uuid4

from airflow.exceptions import AirflowException, AirflowProviderDeprecationWarning
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.emr import EmrContainerHook, EmrHook, EmrServerlessHook
from airflow.providers.amazon.aws.links.emr import EmrClusterLink, EmrLogsLink, get_log_uri
from airflow.providers.amazon.aws.utils.waiter import waiter
from airflow.utils.helpers import exactly_one, prune_dict
from airflow.utils.types import NOTSET, ArgNotSet

if TYPE_CHECKING:
    from airflow.utils.context import Context

from airflow.compat.functools import cached_property


[docs]class EmrAddStepsOperator(BaseOperator): """ An operator that adds steps to an existing EMR job_flow. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrAddStepsOperator` :param job_flow_id: id of the JobFlow to add steps to. (templated) :param job_flow_name: name of the JobFlow to add steps to. Use as an alternative to passing job_flow_id. will search for id of JobFlow with matching name in one of the states in param cluster_states. Exactly one cluster like this should exist or will fail. (templated) :param cluster_states: Acceptable cluster states when searching for JobFlow id by job_flow_name. (templated) :param aws_conn_id: aws connection to uses :param steps: boto3 style steps or reference to a steps file (must be '.json') to be added to the jobflow. (templated) :param wait_for_completion: If True, the operator will wait for all the steps to be completed. :param execution_role_arn: The ARN of the runtime role for a step on the cluster. :param do_xcom_push: if True, job_flow_id is pushed to XCom with key job_flow_id. """
[docs] template_fields: Sequence[str] = ( "job_flow_id", "job_flow_name", "cluster_states", "steps", "execution_role_arn",
)
[docs] template_ext: Sequence[str] = (".json",)
[docs] template_fields_renderers = {"steps": "json"}
[docs] ui_color = "#f9c915"
) def __init__( self, *, job_flow_id: str | None = None, job_flow_name: str | None = None, cluster_states: list[str] | None = None, aws_conn_id: str = "aws_default", steps: list[dict] | str | None = None, wait_for_completion: bool = False, waiter_delay: int | None = None, waiter_max_attempts: int | None = None, execution_role_arn: str | None = None, **kwargs, ): if not exactly_one(job_flow_id is None, job_flow_name is None): raise AirflowException("Exactly one of job_flow_id or job_flow_name must be specified.") super().__init__(**kwargs) cluster_states = cluster_states or [] steps = steps or [] self.aws_conn_id = aws_conn_id self.job_flow_id = job_flow_id self.job_flow_name = job_flow_name self.cluster_states = cluster_states self.steps = steps self.wait_for_completion = wait_for_completion self.waiter_delay = waiter_delay self.waiter_max_attempts = waiter_max_attempts self.execution_role_arn = execution_role_arn
[docs] def execute(self, context: Context) -> list[str]: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) job_flow_id = self.job_flow_id or emr_hook.get_cluster_id_by_name( str(self.job_flow_name), self.cluster_states ) if not job_flow_id: raise AirflowException(f"No cluster found for name: {self.job_flow_name}") if self.do_xcom_push: context["ti"].xcom_push(key="job_flow_id", value=job_flow_id) EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=job_flow_id, ) EmrLogsLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.job_flow_id, log_uri=get_log_uri(emr_client=emr_hook.conn, job_flow_id=job_flow_id), ) self.log.info("Adding steps to %s", job_flow_id) # steps may arrive as a string representing a list # e.g. if we used XCom or a file then: steps="[{ step1 }, { step2 }]" steps = self.steps if isinstance(steps, str): steps = ast.literal_eval(steps) return emr_hook.add_job_flow_steps( job_flow_id=job_flow_id, steps=steps, wait_for_completion=self.wait_for_completion, waiter_delay=self.waiter_delay, waiter_max_attempts=self.waiter_max_attempts, execution_role_arn=self.execution_role_arn,
)
[docs]class EmrStartNotebookExecutionOperator(BaseOperator): """ An operator that starts an EMR notebook execution. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrStartNotebookExecutionOperator` :param editor_id: The unique identifier of the EMR notebook to use for notebook execution. :param relative_path: The path and file name of the notebook file for this execution, relative to the path specified for the EMR notebook. :param cluster_id: The unique identifier of the EMR cluster the notebook is attached to. :param service_role: The name or ARN of the IAM role that is used as the service role for Amazon EMR (the EMR role) for the notebook execution. :param notebook_execution_name: Optional name for the notebook execution. :param notebook_params: Input parameters in JSON format passed to the EMR notebook at runtime for execution. :param: notebook_instance_security_group_id: The unique identifier of the Amazon EC2 security group to associate with the EMR notebook for this notebook execution. :param: master_instance_security_group_id: Optional unique ID of an EC2 security group to associate with the master instance of the EMR cluster for this notebook execution. :param tags: Optional list of key value pair to associate with the notebook execution. :param waiter_max_attempts: Maximum number of tries before failing. :param waiter_delay: Number of seconds between polling the state of the notebook. :param waiter_countdown: Total amount of time the operator will wait for the notebook to stop. Defaults to 25 * 60 seconds. (Deprecated. Please use waiter_max_attempts.) :param waiter_check_interval_seconds: Number of seconds between polling the state of the notebook. Defaults to 60 seconds. (Deprecated. Please use waiter_delay.) """
[docs] template_fields: Sequence[str] = ( "editor_id", "cluster_id", "relative_path", "service_role", "notebook_execution_name", "notebook_params", "notebook_instance_security_group_id", "master_instance_security_group_id", "tags", "waiter_delay", "waiter_max_attempts",
) def __init__( self, editor_id: str, relative_path: str, cluster_id: str, service_role: str, notebook_execution_name: str | None = None, notebook_params: str | None = None, notebook_instance_security_group_id: str | None = None, master_instance_security_group_id: str | None = None, tags: list | None = None, wait_for_completion: bool = False, aws_conn_id: str = "aws_default", # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated. waiter_max_attempts: int | None | ArgNotSet = NOTSET, waiter_delay: int | None | ArgNotSet = NOTSET, waiter_countdown: int = 25 * 60, waiter_check_interval_seconds: int = 60, **kwargs: Any, ): if waiter_max_attempts is NOTSET: warnings.warn( "The parameter waiter_countdown has been deprecated to standardize " "naming conventions. Please use waiter_max_attempts instead. In the " "future this will default to None and defer to the waiter's default value." ) waiter_max_attempts = waiter_countdown // waiter_check_interval_seconds if waiter_delay is NOTSET: warnings.warn( "The parameter waiter_check_interval_seconds has been deprecated to " "standardize naming conventions. Please use waiter_delay instead. In the " "future this will default to None and defer to the waiter's default value." ) waiter_delay = waiter_check_interval_seconds super().__init__(**kwargs) self.editor_id = editor_id self.relative_path = relative_path self.service_role = service_role self.notebook_execution_name = notebook_execution_name or f"emr_notebook_{uuid4()}" self.notebook_params = notebook_params or "" self.notebook_instance_security_group_id = notebook_instance_security_group_id or "" self.tags = tags or [] self.wait_for_completion = wait_for_completion self.cluster_id = cluster_id self.aws_conn_id = aws_conn_id self.waiter_max_attempts = waiter_max_attempts self.waiter_delay = waiter_delay self.master_instance_security_group_id = master_instance_security_group_id
[docs] def execute(self, context: Context): execution_engine = { "Id": self.cluster_id, "Type": "EMR", "MasterInstanceSecurityGroupId": self.master_instance_security_group_id or "", } emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) response = emr_hook.conn.start_notebook_execution( EditorId=self.editor_id, RelativePath=self.relative_path, NotebookExecutionName=self.notebook_execution_name, NotebookParams=self.notebook_params, ExecutionEngine=execution_engine, ServiceRole=self.service_role, NotebookInstanceSecurityGroupId=self.notebook_instance_security_group_id, Tags=self.tags, ) if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException(f"Starting notebook execution failed: {response}") self.log.info("Notebook execution started: %s", response["NotebookExecutionId"]) notebook_execution_id = response["NotebookExecutionId"] if self.wait_for_completion: emr_hook.get_waiter("notebook_running").wait( NotebookExecutionId=notebook_execution_id, WaiterConfig=prune_dict( { "Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts, } ), ) # The old Waiter method raised an exception if the notebook # failed, adding that here. This could maybe be deprecated # later to bring it in line with how other waiters behave. failure_states = {"FAILED"} final_status = emr_hook.conn.describe_notebook_execution( NotebookExecutionId=notebook_execution_id )["NotebookExecution"]["Status"] if final_status in failure_states: raise AirflowException(f"Notebook Execution reached failure state {final_status}.") return notebook_execution_id
[docs]class EmrStopNotebookExecutionOperator(BaseOperator): """ An operator that stops a running EMR notebook execution. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrStopNotebookExecutionOperator` :param notebook_execution_id: The unique identifier of the notebook execution. :param wait_for_completion: If True, the operator will wait for the notebook. to be in a STOPPED or FINISHED state. Defaults to False. :param aws_conn_id: aws connection to use. :param waiter_max_attempts: Maximum number of tries before failing. :param waiter_delay: Number of seconds between polling the state of the notebook. :param waiter_countdown: Total amount of time the operator will wait for the notebook to stop. Defaults to 25 * 60 seconds. (Deprecated. Please use waiter_max_attempts.) :param waiter_check_interval_seconds: Number of seconds between polling the state of the notebook. Defaults to 60 seconds. (Deprecated. Please use waiter_delay.) """
[docs] template_fields: Sequence[str] = ( "notebook_execution_id", "waiter_delay", "waiter_max_attempts",
) def __init__( self, notebook_execution_id: str, wait_for_completion: bool = False, aws_conn_id: str = "aws_default", # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated. waiter_max_attempts: int | None | ArgNotSet = NOTSET, waiter_delay: int | None | ArgNotSet = NOTSET, waiter_countdown: int = 25 * 60, waiter_check_interval_seconds: int = 60, **kwargs: Any, ): if waiter_max_attempts is NOTSET: warnings.warn( "The parameter waiter_countdown has been deprecated to standardize " "naming conventions. Please use waiter_max_attempts instead. In the " "future this will default to None and defer to the waiter's default value." ) waiter_max_attempts = waiter_countdown // waiter_check_interval_seconds if waiter_delay is NOTSET: warnings.warn( "The parameter waiter_check_interval_seconds has been deprecated to " "standardize naming conventions. Please use waiter_delay instead. In the " "future this will default to None and defer to the waiter's default value." ) waiter_delay = waiter_check_interval_seconds super().__init__(**kwargs) self.notebook_execution_id = notebook_execution_id self.wait_for_completion = wait_for_completion self.aws_conn_id = aws_conn_id self.waiter_max_attempts = waiter_max_attempts self.waiter_delay = waiter_delay
[docs] def execute(self, context: Context) -> None: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr_hook.conn.stop_notebook_execution(NotebookExecutionId=self.notebook_execution_id) if self.wait_for_completion: emr_hook.get_waiter("notebook_stopped").wait( NotebookExecutionId=self.notebook_execution_id, WaiterConfig=prune_dict( { "Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts,
} ), )
[docs]class EmrEksCreateClusterOperator(BaseOperator): """ An operator that creates EMR on EKS virtual clusters. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrEksCreateClusterOperator` :param virtual_cluster_name: The name of the EMR EKS virtual cluster to create. :param eks_cluster_name: The EKS cluster used by the EMR virtual cluster. :param eks_namespace: namespace used by the EKS cluster. :param virtual_cluster_id: The EMR on EKS virtual cluster id. :param aws_conn_id: The Airflow connection used for AWS credentials. :param tags: The tags assigned to created cluster. Defaults to None """
[docs] template_fields: Sequence[str] = ( "virtual_cluster_name", "eks_cluster_name", "eks_namespace",
)
[docs] ui_color = "#f9c915"
def __init__( self, *, virtual_cluster_name: str, eks_cluster_name: str, eks_namespace: str, virtual_cluster_id: str = "", aws_conn_id: str = "aws_default", tags: dict | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.virtual_cluster_name = virtual_cluster_name self.eks_cluster_name = eks_cluster_name self.eks_namespace = eks_namespace self.virtual_cluster_id = virtual_cluster_id self.aws_conn_id = aws_conn_id self.tags = tags @cached_property
[docs] def hook(self) -> EmrContainerHook: """Create and return an EmrContainerHook.""" return EmrContainerHook(self.aws_conn_id)
[docs] def execute(self, context: Context) -> str | None: """Create EMR on EKS virtual Cluster""" self.virtual_cluster_id = self.hook.create_emr_on_eks_cluster( self.virtual_cluster_name, self.eks_cluster_name, self.eks_namespace, self.tags ) return self.virtual_cluster_id
[docs]class EmrContainerOperator(BaseOperator): """ An operator that submits jobs to EMR on EKS virtual clusters. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrContainerOperator` :param name: The name of the job run. :param virtual_cluster_id: The EMR on EKS virtual cluster ID :param execution_role_arn: The IAM role ARN associated with the job run. :param release_label: The Amazon EMR release version to use for the job run. :param job_driver: Job configuration details, e.g. the Spark job parameters. :param configuration_overrides: The configuration overrides for the job run, specifically either application configuration or monitoring configuration. :param client_request_token: The client idempotency token of the job run request. Use this if you want to specify a unique ID to prevent two jobs from getting started. If no token is provided, a UUIDv4 token will be generated for you. :param aws_conn_id: The Airflow connection used for AWS credentials. :param wait_for_completion: Whether or not to wait in the operator for the job to complete. :param poll_interval: Time (in seconds) to wait between two consecutive calls to check query status on EMR :param max_tries: Deprecated - use max_polling_attempts instead. :param max_polling_attempts: Maximum number of times to wait for the job run to finish. Defaults to None, which will poll until the job is *not* in a pending, submitted, or running state. :param tags: The tags assigned to job runs. Defaults to None """
[docs] template_fields: Sequence[str] = ( "name", "virtual_cluster_id", "execution_role_arn", "release_label", "job_driver", "configuration_overrides",
)
[docs] ui_color = "#f9c915"
def __init__( self, *, name: str, virtual_cluster_id: str, execution_role_arn: str, release_label: str, job_driver: dict, configuration_overrides: dict | None = None, client_request_token: str | None = None, aws_conn_id: str = "aws_default", wait_for_completion: bool = True, poll_interval: int = 30, max_tries: int | None = None, tags: dict | None = None, max_polling_attempts: int | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.name = name self.virtual_cluster_id = virtual_cluster_id self.execution_role_arn = execution_role_arn self.release_label = release_label self.job_driver = job_driver self.configuration_overrides = configuration_overrides or {} self.aws_conn_id = aws_conn_id self.client_request_token = client_request_token or str(uuid4()) self.wait_for_completion = wait_for_completion self.poll_interval = poll_interval self.max_polling_attempts = max_polling_attempts self.tags = tags self.job_id: str | None = None if max_tries: warnings.warn( f"Parameter `{self.__class__.__name__}.max_tries` is deprecated and will be removed " "in a future release. Please use method `max_polling_attempts` instead.", AirflowProviderDeprecationWarning, stacklevel=2, ) if max_polling_attempts and max_polling_attempts != max_tries: raise Exception("max_polling_attempts must be the same value as max_tries") else: self.max_polling_attempts = max_tries @cached_property
[docs] def hook(self) -> EmrContainerHook: """Create and return an EmrContainerHook.""" return EmrContainerHook( self.aws_conn_id, virtual_cluster_id=self.virtual_cluster_id,
)
[docs] def execute(self, context: Context) -> str | None: """Run job on EMR Containers""" self.job_id = self.hook.submit_job( self.name, self.execution_role_arn, self.release_label, self.job_driver, self.configuration_overrides, self.client_request_token, self.tags, ) if self.wait_for_completion: query_status = self.hook.poll_query_status( self.job_id, max_polling_attempts=self.max_polling_attempts, poll_interval=self.poll_interval, ) if query_status in EmrContainerHook.FAILURE_STATES: error_message = self.hook.get_job_failure_reason(self.job_id) raise AirflowException( f"EMR Containers job failed. Final state is {query_status}. " f"query_execution_id is {self.job_id}. Error: {error_message}" ) elif not query_status or query_status in EmrContainerHook.INTERMEDIATE_STATES: raise AirflowException( f"Final state of EMR Containers job is {query_status}. " f"Max tries of poll status exceeded, query_execution_id is {self.job_id}." ) return self.job_id
[docs] def on_kill(self) -> None: """Cancel the submitted job run""" if self.job_id: self.log.info("Stopping job run with jobId - %s", self.job_id) response = self.hook.stop_query(self.job_id) http_status_code = None try: http_status_code = response["ResponseMetadata"]["HTTPStatusCode"] except Exception as ex: self.log.error("Exception while cancelling query: %s", ex) finally: if http_status_code is None or http_status_code != 200: self.log.error("Unable to request query cancel on EMR. Exiting") else: self.log.info( "Polling EMR for query with id %s to reach final state", self.job_id, ) self.hook.poll_query_status(self.job_id)
[docs]class EmrCreateJobFlowOperator(BaseOperator): """ Creates an EMR JobFlow, reading the config from the EMR connection. A dictionary of JobFlow overrides can be passed that override the config from the connection. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrCreateJobFlowOperator` :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node) :param emr_conn_id: :ref:`Amazon Elastic MapReduce Connection <howto/connection:emr>`. Use to receive an initial Amazon EMR cluster configuration: ``boto3.client('emr').run_job_flow`` request body. If this is None or empty or the connection does not exist, then an empty initial configuration is used. :param job_flow_overrides: boto3 style arguments or reference to an arguments file (must be '.json') to override specific ``emr_conn_id`` extra parameters. (templated) :param region_name: Region named passed to EmrHook :param wait_for_completion: Whether to finish task immediately after creation (False) or wait for jobflow completion (True) :param waiter_max_attempts: Maximum number of tries before failing. :param waiter_delay: Number of seconds between polling the state of the notebook. :param waiter_countdown: Max. seconds to wait for jobflow completion (only in combination with wait_for_completion=True, None = no limit) (Deprecated. Please use waiter_max_attempts.) :param waiter_check_interval_seconds: Number of seconds between polling the jobflow state. Defaults to 60 seconds. (Deprecated. Please use waiter_delay.) """
[docs] template_fields: Sequence[str] = ( "job_flow_overrides", "waiter_delay", "waiter_max_attempts",
)
[docs] template_ext: Sequence[str] = (".json",)
[docs] template_fields_renderers = {"job_flow_overrides": "json"}
[docs] ui_color = "#f9c915"
) def __init__( self, *, aws_conn_id: str = "aws_default", emr_conn_id: str | None = "emr_default", job_flow_overrides: str | dict[str, Any] | None = None, region_name: str | None = None, wait_for_completion: bool = False, # TODO: waiter_max_attempts and waiter_delay should default to None when the other two are deprecated. waiter_max_attempts: int | None | ArgNotSet = NOTSET, waiter_delay: int | None | ArgNotSet = NOTSET, waiter_countdown: int | None = None, waiter_check_interval_seconds: int = 60, **kwargs: Any, ): if waiter_max_attempts is NOTSET: warnings.warn( "The parameter waiter_countdown has been deprecated to standardize " "naming conventions. Please use waiter_max_attempts instead. In the " "future this will default to None and defer to the waiter's default value." ) # waiter_countdown defaults to never timing out, which is not supported # by boto waiters, so we will set it here to "a very long time" for now. waiter_max_attempts = (waiter_countdown or 999) // waiter_check_interval_seconds if waiter_delay is NOTSET: warnings.warn( "The parameter waiter_check_interval_seconds has been deprecated to " "standardize naming conventions. Please use waiter_delay instead. In the " "future this will default to None and defer to the waiter's default value." ) waiter_delay = waiter_check_interval_seconds super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.emr_conn_id = emr_conn_id self.job_flow_overrides = job_flow_overrides or {} self.region_name = region_name self.wait_for_completion = wait_for_completion self.waiter_max_attempts = waiter_max_attempts self.waiter_delay = waiter_delay self._job_flow_id: str | None = None @cached_property def _emr_hook(self) -> EmrHook: """Create and return an EmrHook.""" return EmrHook( aws_conn_id=self.aws_conn_id, emr_conn_id=self.emr_conn_id, region_name=self.region_name )
[docs] def execute(self, context: Context) -> str | None: self.log.info( "Creating job flow using aws_conn_id: %s, emr_conn_id: %s", self.aws_conn_id, self.emr_conn_id ) if isinstance(self.job_flow_overrides, str): job_flow_overrides: dict[str, Any] = ast.literal_eval(self.job_flow_overrides) self.job_flow_overrides = job_flow_overrides else: job_flow_overrides = self.job_flow_overrides response = self._emr_hook.create_job_flow(job_flow_overrides) if not response["ResponseMetadata"]["HTTPStatusCode"] == 200: raise AirflowException(f"Job flow creation failed: {response}") else: self._job_flow_id = response["JobFlowId"] self.log.info("Job flow with id %s created", self._job_flow_id) EmrClusterLink.persist( context=context, operator=self, region_name=self._emr_hook.conn_region_name, aws_partition=self._emr_hook.conn_partition, job_flow_id=self._job_flow_id, ) if self._job_flow_id: EmrLogsLink.persist( context=context, operator=self, region_name=self._emr_hook.conn_region_name, aws_partition=self._emr_hook.conn_partition, job_flow_id=self._job_flow_id, log_uri=get_log_uri(emr_client=self._emr_hook.conn, job_flow_id=self._job_flow_id), ) if self.wait_for_completion: self._emr_hook.get_waiter("job_flow_waiting").wait( ClusterId=self._job_flow_id, WaiterConfig=prune_dict( { "Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts, } ), ) return self._job_flow_id
[docs] def on_kill(self) -> None: """ Terminate the EMR cluster (job flow). If TerminationProtected=True on the cluster, termination will be unsuccessful. """ if self._job_flow_id: self.log.info("Terminating job flow %s", self._job_flow_id) self._emr_hook.conn.terminate_job_flows(JobFlowIds=[self._job_flow_id])
[docs]class EmrModifyClusterOperator(BaseOperator): """ An operator that modifies an existing EMR cluster. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrModifyClusterOperator` :param cluster_id: cluster identifier :param step_concurrency_level: Concurrency of the cluster :param aws_conn_id: aws connection to uses :param do_xcom_push: if True, cluster_id is pushed to XCom with key cluster_id. """
[docs] template_fields: Sequence[str] = ("cluster_id", "step_concurrency_level")
[docs] template_ext: Sequence[str] = ()
[docs] ui_color = "#f9c915"
) def __init__( self, *, cluster_id: str, step_concurrency_level: int, aws_conn_id: str = "aws_default", **kwargs ): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.cluster_id = cluster_id self.step_concurrency_level = step_concurrency_level
[docs] def execute(self, context: Context) -> int: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr = emr_hook.get_conn() if self.do_xcom_push: context["ti"].xcom_push(key="cluster_id", value=self.cluster_id) EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.cluster_id, ) EmrLogsLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.cluster_id, log_uri=get_log_uri(emr_client=emr_hook.conn, job_flow_id=self.cluster_id), ) self.log.info("Modifying cluster %s", self.cluster_id) response = emr.modify_cluster( ClusterId=self.cluster_id, StepConcurrencyLevel=self.step_concurrency_level ) if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException(f"Modify cluster failed: {response}") else: self.log.info("Steps concurrency level %d", response["StepConcurrencyLevel"]) return response["StepConcurrencyLevel"]
[docs]class EmrTerminateJobFlowOperator(BaseOperator): """ Operator to terminate EMR JobFlows. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrTerminateJobFlowOperator` :param job_flow_id: id of the JobFlow to terminate. (templated) :param aws_conn_id: aws connection to uses """
[docs] template_fields: Sequence[str] = ("job_flow_id",)
[docs] template_ext: Sequence[str] = ()
[docs] ui_color = "#f9c915"
) def __init__(self, *, job_flow_id: str, aws_conn_id: str = "aws_default", **kwargs): super().__init__(**kwargs) self.job_flow_id = job_flow_id self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: Context) -> None: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr = emr_hook.get_conn() EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.job_flow_id, ) EmrLogsLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.job_flow_id, log_uri=get_log_uri(emr_client=emr, job_flow_id=self.job_flow_id), ) self.log.info("Terminating JobFlow %s", self.job_flow_id) response = emr.terminate_job_flows(JobFlowIds=[self.job_flow_id]) if not response["ResponseMetadata"]["HTTPStatusCode"] == 200: raise AirflowException(f"JobFlow termination failed: {response}") else: self.log.info("JobFlow with id %s terminated", self.job_flow_id)
[docs]class EmrServerlessCreateApplicationOperator(BaseOperator): """ Operator to create Serverless EMR Application .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessCreateApplicationOperator` :param release_label: The EMR release version associated with the application. :param job_type: The type of application you want to start, such as Spark or Hive. :param wait_for_completion: If true, wait for the Application to start before returning. Default to True. If set to False, ``waiter_countdown`` and ``waiter_check_interval_seconds`` will only be applied when waiting for the application to be in the ``CREATED`` state. :param client_request_token: The client idempotency token of the application to create. Its value must be unique for each request. :param config: Optional dictionary for arbitrary parameters to the boto API create_application call. :param aws_conn_id: AWS connection to use :param waiter_countdown: Total amount of time, in seconds, the operator will wait for the application to start. Defaults to 25 minutes. :param waiter_check_interval_seconds: Number of seconds between polling the state of the application. Defaults to 60 seconds. """ def __init__( self, release_label: str, job_type: str, client_request_token: str = "", config: dict | None = None, wait_for_completion: bool = True, aws_conn_id: str = "aws_default", waiter_countdown: int = 25 * 60, waiter_check_interval_seconds: int = 60, **kwargs, ): self.aws_conn_id = aws_conn_id self.release_label = release_label self.job_type = job_type self.wait_for_completion = wait_for_completion self.kwargs = kwargs self.config = config or {} self.waiter_countdown = waiter_countdown self.waiter_check_interval_seconds = waiter_check_interval_seconds super().__init__(**kwargs) self.client_request_token = client_request_token or str(uuid4()) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: Context) -> str | None: response = self.hook.conn.create_application( clientToken=self.client_request_token, releaseLabel=self.release_label, type=self.job_type, **self.config, ) application_id = response["applicationId"] if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException(f"Application Creation failed: {response}") self.log.info("EMR serverless application created: %s", application_id) # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_application, get_state_args={"applicationId": application_id}, parse_response=["application", "state"], desired_state={"CREATED"}, failure_states=EmrServerlessHook.APPLICATION_FAILURE_STATES, object_type="application", action="created", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) self.log.info("Starting application %s", application_id) self.hook.conn.start_application(applicationId=application_id) if self.wait_for_completion: # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_application, get_state_args={"applicationId": application_id}, parse_response=["application", "state"], desired_state={"STARTED"}, failure_states=EmrServerlessHook.APPLICATION_FAILURE_STATES, object_type="application", action="started", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) return application_id
[docs]class EmrServerlessStartJobOperator(BaseOperator): """ Operator to start EMR Serverless job. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessStartJobOperator` :param application_id: ID of the EMR Serverless application to start. :param execution_role_arn: ARN of role to perform action. :param job_driver: Driver that the job runs on. :param configuration_overrides: Configuration specifications to override existing configurations. :param client_request_token: The client idempotency token of the application to create. Its value must be unique for each request. :param config: Optional dictionary for arbitrary parameters to the boto API start_job_run call. :param wait_for_completion: If true, waits for the job to start before returning. Defaults to True. If set to False, ``waiter_countdown`` and ``waiter_check_interval_seconds`` will only be applied when waiting for the application be to in the ``STARTED`` state. :param aws_conn_id: AWS connection to use. :param name: Name for the EMR Serverless job. If not provided, a default name will be assigned. :param waiter_countdown: Total amount of time, in seconds, the operator will wait for the job finish. Defaults to 25 minutes. :param waiter_check_interval_seconds: Number of seconds between polling the state of the job. Defaults to 60 seconds. """
[docs] template_fields: Sequence[str] = ( "application_id", "execution_role_arn", "job_driver", "configuration_overrides",
) def __init__( self, application_id: str, execution_role_arn: str, job_driver: dict, configuration_overrides: dict | None, client_request_token: str = "", config: dict | None = None, wait_for_completion: bool = True, aws_conn_id: str = "aws_default", name: str | None = None, waiter_countdown: int = 25 * 60, waiter_check_interval_seconds: int = 60, **kwargs, ): self.aws_conn_id = aws_conn_id self.application_id = application_id self.execution_role_arn = execution_role_arn self.job_driver = job_driver self.configuration_overrides = configuration_overrides self.wait_for_completion = wait_for_completion self.config = config or {} self.name = name or self.config.pop("name", f"emr_serverless_job_airflow_{uuid4()}") self.waiter_countdown = waiter_countdown self.waiter_check_interval_seconds = waiter_check_interval_seconds self.job_id: str | None = None super().__init__(**kwargs) self.client_request_token = client_request_token or str(uuid4()) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: Context) -> str | None: self.log.info("Starting job on Application: %s", self.application_id) app_state = self.hook.conn.get_application(applicationId=self.application_id)["application"]["state"] if app_state not in EmrServerlessHook.APPLICATION_SUCCESS_STATES: self.hook.conn.start_application(applicationId=self.application_id) waiter( get_state_callable=self.hook.conn.get_application, get_state_args={"applicationId": self.application_id}, parse_response=["application", "state"], desired_state={"STARTED"}, failure_states=EmrServerlessHook.APPLICATION_FAILURE_STATES, object_type="application", action="started", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) response = self.hook.conn.start_job_run( clientToken=self.client_request_token, applicationId=self.application_id, executionRoleArn=self.execution_role_arn, jobDriver=self.job_driver, configurationOverrides=self.configuration_overrides, name=self.name, **self.config, ) if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException(f"EMR serverless job failed to start: {response}") self.job_id = response["jobRunId"] self.log.info("EMR serverless job started: %s", self.job_id) if self.wait_for_completion: # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_job_run, get_state_args={ "applicationId": self.application_id, "jobRunId": self.job_id, }, parse_response=["jobRun", "state"], desired_state=EmrServerlessHook.JOB_SUCCESS_STATES, failure_states=EmrServerlessHook.JOB_FAILURE_STATES, object_type="job", action="run", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) return self.job_id
[docs] def on_kill(self) -> None: """Cancel the submitted job run""" if self.job_id: self.log.info("Stopping job run with jobId - %s", self.job_id) response = self.hook.conn.cancel_job_run(applicationId=self.application_id, jobRunId=self.job_id) http_status_code = ( response.get("ResponseMetadata", {}).get("HTTPStatusCode") if response else None ) if http_status_code is None or http_status_code != 200: self.log.error("Unable to request query cancel on EMR Serverless. Exiting") return self.log.info( "Polling EMR Serverless for query with id %s to reach final state", self.job_id, ) # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_job_run, get_state_args={ "applicationId": self.application_id, "jobRunId": self.job_id, }, parse_response=["jobRun", "state"], desired_state=EmrServerlessHook.JOB_TERMINAL_STATES, failure_states=set(), object_type="job", action="cancelled", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds,
)
[docs]class EmrServerlessStopApplicationOperator(BaseOperator): """ Operator to stop an EMR Serverless application .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessStopApplicationOperator` :param application_id: ID of the EMR Serverless application to stop. :param wait_for_completion: If true, wait for the Application to stop before returning. Default to True :param aws_conn_id: AWS connection to use :param waiter_countdown: Total amount of time, in seconds, the operator will wait for the application be stopped. Defaults to 5 minutes. :param waiter_check_interval_seconds: Number of seconds between polling the state of the application. Defaults to 30 seconds. :param force_stop: If set to True, any job for that app that is not in a terminal state will be cancelled. Otherwise, trying to stop an app with running jobs will return an error. If you want to wait for the jobs to finish gracefully, use :class:`airflow.providers.amazon.aws.sensors.emr.EmrServerlessJobSensor` """
[docs] template_fields: Sequence[str] = ("application_id",)
def __init__( self, application_id: str, wait_for_completion: bool = True, aws_conn_id: str = "aws_default", waiter_countdown: int = 5 * 60, waiter_check_interval_seconds: int = 30, force_stop: bool = False, **kwargs, ): self.aws_conn_id = aws_conn_id self.application_id = application_id self.wait_for_completion = wait_for_completion self.waiter_countdown = waiter_countdown self.waiter_check_interval_seconds = waiter_check_interval_seconds self.force_stop = force_stop super().__init__(**kwargs) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: Context) -> None: self.log.info("Stopping application: %s", self.application_id) if self.force_stop: self.hook.cancel_running_jobs( self.application_id, waiter_config={ "Delay": self.waiter_check_interval_seconds, "MaxAttempts": self.waiter_countdown / self.waiter_check_interval_seconds, }, ) self.hook.conn.stop_application(applicationId=self.application_id) if self.wait_for_completion: # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_application, get_state_args={ "applicationId": self.application_id, }, parse_response=["application", "state"], desired_state=EmrServerlessHook.APPLICATION_FAILURE_STATES, failure_states=set(), object_type="application", action="stopped", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) self.log.info("EMR serverless application %s stopped successfully", self.application_id)
[docs]class EmrServerlessDeleteApplicationOperator(EmrServerlessStopApplicationOperator): """ Operator to delete EMR Serverless application .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessDeleteApplicationOperator` :param application_id: ID of the EMR Serverless application to delete. :param wait_for_completion: If true, wait for the Application to be deleted before returning. Defaults to True. Note that this operator will always wait for the application to be STOPPED first. :param aws_conn_id: AWS connection to use :param waiter_countdown: Total amount of time, in seconds, the operator will wait for each step of first, the application to be stopped, and then deleted. Defaults to 25 minutes. :param waiter_check_interval_seconds: Number of seconds between polling the state of the application. Defaults to 60 seconds. :param force_stop: If set to True, any job for that app that is not in a terminal state will be cancelled. Otherwise, trying to delete an app with running jobs will return an error. If you want to wait for the jobs to finish gracefully, use :class:`airflow.providers.amazon.aws.sensors.emr.EmrServerlessJobSensor` """
[docs] template_fields: Sequence[str] = ("application_id",)
def __init__( self, application_id: str, wait_for_completion: bool = True, aws_conn_id: str = "aws_default", waiter_countdown: int = 25 * 60, waiter_check_interval_seconds: int = 60, force_stop: bool = False, **kwargs, ): self.wait_for_delete_completion = wait_for_completion # super stops the app super().__init__( application_id=application_id, # when deleting an app, we always need to wait for it to stop before we can call delete() wait_for_completion=True, aws_conn_id=aws_conn_id, waiter_countdown=waiter_countdown, waiter_check_interval_seconds=waiter_check_interval_seconds, force_stop=force_stop, **kwargs, )
[docs] def execute(self, context: Context) -> None: # super stops the app (or makes sure it's already stopped) super().execute(context) self.log.info("Now deleting application: %s", self.application_id) response = self.hook.conn.delete_application(applicationId=self.application_id) if response["ResponseMetadata"]["HTTPStatusCode"] != 200: raise AirflowException(f"Application deletion failed: {response}") if self.wait_for_delete_completion: # This should be replaced with a boto waiter when available. waiter( get_state_callable=self.hook.conn.get_application, get_state_args={"applicationId": self.application_id}, parse_response=["application", "state"], desired_state={"TERMINATED"}, failure_states=EmrServerlessHook.APPLICATION_FAILURE_STATES, object_type="application", action="deleted", countdown=self.waiter_countdown, check_interval_seconds=self.waiter_check_interval_seconds, ) self.log.info("EMR serverless application deleted")

Was this entry helpful?