Source code for tests.system.providers.amazon.aws.example_dynamodb_to_s3

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from datetime import datetime

import boto3

from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.amazon.aws.operators.s3 import S3CreateBucketOperator, S3DeleteBucketOperator
from airflow.providers.amazon.aws.transfers.dynamodb_to_s3 import DynamoDBToS3Operator
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import ENV_ID_KEY, SystemTestContextBuilder

[docs]DAG_ID = "example_dynamodb_to_s3"
[docs]sys_test_context_task = SystemTestContextBuilder().build()
[docs]TABLE_ATTRIBUTES = [ {"AttributeName": "ID", "AttributeType": "S"}, {"AttributeName": "Value", "AttributeType": "S"},
]
[docs]TABLE_KEY_SCHEMA = [ {"AttributeName": "ID", "KeyType": "HASH"}, {"AttributeName": "Value", "KeyType": "RANGE"},
]
[docs]TABLE_THROUGHPUT = {"ReadCapacityUnits": 1, "WriteCapacityUnits": 1}
[docs]S3_KEY_PREFIX = "dynamodb-segmented-file"
@task
[docs]def set_up_table(table_name: str): dynamo_resource = boto3.resource("dynamodb") table = dynamo_resource.create_table( AttributeDefinitions=TABLE_ATTRIBUTES, TableName=table_name, KeySchema=TABLE_KEY_SCHEMA, ProvisionedThroughput=TABLE_THROUGHPUT, ) boto3.client("dynamodb").get_waiter("table_exists").wait( TableName=table_name, WaiterConfig={"Delay": 10, "MaxAttempts": 10} ) table.put_item(Item={"ID": "123", "Value": "Testing"})
@task
[docs]def wait_for_bucket(s3_bucket_name): waiter = boto3.client("s3").get_waiter("bucket_exists") waiter.wait(Bucket=s3_bucket_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_dynamodb_table(table_name: str): boto3.resource("dynamodb").Table(table_name).delete() boto3.client("dynamodb").get_waiter("table_not_exists").wait( TableName=table_name, WaiterConfig={"Delay": 10, "MaxAttempts": 10}
) with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example"], ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context[ENV_ID_KEY] table_name = f"{env_id}-dynamodb-table" bucket_name = f"{env_id}-dynamodb-bucket" create_table = set_up_table(table_name=table_name) create_bucket = S3CreateBucketOperator(task_id="create_bucket", bucket_name=bucket_name) # [START howto_transfer_dynamodb_to_s3] backup_db = DynamoDBToS3Operator( task_id="backup_db", dynamodb_table_name=table_name, s3_bucket_name=bucket_name, # Max output file size in bytes. If the Table is too large, multiple files will be created. file_size=20, ) # [END howto_transfer_dynamodb_to_s3] # [START howto_transfer_dynamodb_to_s3_segmented] # Segmenting allows the transfer to be parallelized into {segment} number of parallel tasks. backup_db_segment_1 = DynamoDBToS3Operator( task_id="backup_db_segment_1", dynamodb_table_name=table_name, s3_bucket_name=bucket_name, # Max output file size in bytes. If the Table is too large, multiple files will be created. file_size=1000, s3_key_prefix=f"{S3_KEY_PREFIX}-1-", dynamodb_scan_kwargs={ "TotalSegments": 2, "Segment": 0, }, ) backup_db_segment_2 = DynamoDBToS3Operator( task_id="backup_db_segment_2", dynamodb_table_name=table_name, s3_bucket_name=bucket_name, # Max output file size in bytes. If the Table is too large, multiple files will be created. file_size=1000, s3_key_prefix=f"{S3_KEY_PREFIX}-2-", dynamodb_scan_kwargs={ "TotalSegments": 2, "Segment": 1, }, ) # [END howto_transfer_dynamodb_to_s3_segmented] delete_table = delete_dynamodb_table(table_name=table_name) delete_bucket = S3DeleteBucketOperator( task_id="delete_bucket", bucket_name=bucket_name, trigger_rule=TriggerRule.ALL_DONE, force_delete=True, ) chain( # TEST SETUP test_context, create_table, create_bucket, wait_for_bucket(s3_bucket_name=bucket_name), # TEST BODY backup_db, backup_db_segment_1, backup_db_segment_2, # TEST TEARDOWN delete_table, delete_bucket, ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?