# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from datetime import datetime
import boto3
from airflow import DAG
from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.providers.amazon.aws.operators.batch import BatchCreateComputeEnvironmentOperator, BatchOperator
from airflow.providers.amazon.aws.sensors.batch import (
BatchComputeEnvironmentSensor,
BatchJobQueueSensor,
BatchSensor,
)
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import (
ENV_ID_KEY,
SystemTestContextBuilder,
prune_logs,
split_string,
)
[docs]DAG_ID = "example_batch"
# Externally fetched variables:
[docs]ROLE_ARN_KEY = "ROLE_ARN"
[docs]SECURITY_GROUPS_KEY = "SECURITY_GROUPS"
[docs]sys_test_context_task = (
SystemTestContextBuilder()
.add_variable(ROLE_ARN_KEY)
.add_variable(SUBNETS_KEY)
.add_variable(SECURITY_GROUPS_KEY)
.build()
)
[docs]JOB_OVERRIDES: dict = {}
@task
[docs]def create_job_definition(role_arn, job_definition_name):
boto3.client("batch").register_job_definition(
type="container",
containerProperties={
"command": [
"sleep",
"2",
],
"executionRoleArn": role_arn,
"image": "busybox",
"resourceRequirements": [
{"value": "1", "type": "VCPU"},
{"value": "2048", "type": "MEMORY"},
],
"networkConfiguration": {
"assignPublicIp": "ENABLED",
},
},
jobDefinitionName=job_definition_name,
platformCapabilities=["FARGATE"],
)
@task
[docs]def create_job_queue(job_compute_environment_name, job_queue_name):
boto3.client("batch").create_job_queue(
computeEnvironmentOrder=[
{
"computeEnvironment": job_compute_environment_name,
"order": 1,
},
],
jobQueueName=job_queue_name,
priority=1,
state="ENABLED",
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_job_definition(job_definition_name):
client = boto3.client("batch")
response = client.describe_job_definitions(
jobDefinitionName=job_definition_name,
status="ACTIVE",
)
for job_definition in response["jobDefinitions"]:
client.deregister_job_definition(
jobDefinition=job_definition["jobDefinitionArn"],
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def disable_compute_environment(job_compute_environment_name):
boto3.client("batch").update_compute_environment(
computeEnvironment=job_compute_environment_name,
state="DISABLED",
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_compute_environment(job_compute_environment_name):
boto3.client("batch").delete_compute_environment(
computeEnvironment=job_compute_environment_name,
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def disable_job_queue(job_queue_name):
boto3.client("batch").update_job_queue(
jobQueue=job_queue_name,
state="DISABLED",
)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_job_queue(job_queue_name):
boto3.client("batch").delete_job_queue(
jobQueue=job_queue_name,
)
with DAG(
dag_id=DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
tags=["example"],
catchup=False,
) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context[ENV_ID_KEY]
batch_job_name: str = f"{env_id}-test-job"
batch_job_definition_name: str = f"{env_id}-test-job-definition"
batch_job_compute_environment_name: str = f"{env_id}-test-job-compute-environment"
batch_job_queue_name: str = f"{env_id}-test-job-queue"
security_groups = split_string(test_context[SECURITY_GROUPS_KEY])
subnets = split_string(test_context[SUBNETS_KEY])
# [START howto_operator_batch_create_compute_environment]
create_compute_environment = BatchCreateComputeEnvironmentOperator(
task_id="create_compute_environment",
compute_environment_name=batch_job_compute_environment_name,
environment_type="MANAGED",
state="ENABLED",
compute_resources={
"type": "FARGATE",
"maxvCpus": 10,
"securityGroupIds": security_groups,
"subnets": subnets,
},
)
# [END howto_operator_batch_create_compute_environment]
# [START howto_sensor_batch_compute_environment]
wait_for_compute_environment_valid = BatchComputeEnvironmentSensor(
task_id="wait_for_compute_environment_valid",
compute_environment=batch_job_compute_environment_name,
)
# [END howto_sensor_batch_compute_environment]
wait_for_compute_environment_valid.poke_interval = 1
# [START howto_sensor_batch_job_queue]
wait_for_job_queue_valid = BatchJobQueueSensor(
task_id="wait_for_job_queue_valid",
job_queue=batch_job_queue_name,
)
# [END howto_sensor_batch_job_queue]
wait_for_job_queue_valid.poke_interval = 1
# [START howto_operator_batch]
submit_batch_job = BatchOperator(
task_id="submit_batch_job",
job_name=batch_job_name,
job_queue=batch_job_queue_name,
job_definition=batch_job_definition_name,
overrides=JOB_OVERRIDES,
)
# [END howto_operator_batch]
# BatchOperator waits by default, setting as False to test the Sensor below.
submit_batch_job.wait_for_completion = False
# [START howto_sensor_batch]
wait_for_batch_job = BatchSensor(
task_id="wait_for_batch_job",
job_id=submit_batch_job.output,
)
# [END howto_sensor_batch]
wait_for_batch_job.poke_interval = 10
wait_for_compute_environment_disabled = BatchComputeEnvironmentSensor(
task_id="wait_for_compute_environment_disabled",
compute_environment=batch_job_compute_environment_name,
poke_interval=1,
)
wait_for_job_queue_modified = BatchJobQueueSensor(
task_id="wait_for_job_queue_modified",
job_queue=batch_job_queue_name,
poke_interval=1,
)
wait_for_job_queue_deleted = BatchJobQueueSensor(
task_id="wait_for_job_queue_deleted",
job_queue=batch_job_queue_name,
treat_non_existing_as_deleted=True,
poke_interval=10,
)
log_cleanup = prune_logs(
[
# Format: ('log group name', 'log stream prefix')
("/aws/batch/job", env_id)
],
)
chain(
# TEST SETUP
test_context,
security_groups,
subnets,
create_job_definition(test_context[ROLE_ARN_KEY], batch_job_definition_name),
# TEST BODY
create_compute_environment,
wait_for_compute_environment_valid,
# ``create_job_queue`` is part of test setup but need the compute-environment to be created before
create_job_queue(batch_job_compute_environment_name, batch_job_queue_name),
wait_for_job_queue_valid,
submit_batch_job,
wait_for_batch_job,
# TEST TEARDOWN
disable_job_queue(batch_job_queue_name),
wait_for_job_queue_modified,
delete_job_queue(batch_job_queue_name),
wait_for_job_queue_deleted,
disable_compute_environment(batch_job_compute_environment_name),
wait_for_compute_environment_disabled,
delete_compute_environment(batch_job_compute_environment_name),
delete_job_definition(batch_job_definition_name),
log_cleanup,
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)