airflow.providers.amazon.aws.transfers.s3_to_sql
¶
Module Contents¶
Classes¶
Loads Data from S3 into a SQL Database. |
- class airflow.providers.amazon.aws.transfers.s3_to_sql.S3ToSqlOperator(*, s3_key, s3_bucket, table, parser, column_list=None, commit_every=1000, schema=None, sql_conn_id='sql_default', aws_conn_id='aws_default', **kwargs)[source]¶
Bases:
airflow.models.BaseOperator
Loads Data from S3 into a SQL Database. You need to provide a parser function that takes a filename as an input and returns an iterable of rows
See also
For more information on how to use this operator, take a look at the guide: Amazon S3 To SQL Transfer Operator
- Parameters
schema (str | None) – reference to a specific schema in SQL database
table (str) – reference to a specific table in SQL database
s3_bucket (str) – reference to a specific S3 bucket
s3_key (str) – reference to a specific S3 key
sql_conn_id (str) – reference to a specific SQL database. Must be of type DBApiHook
aws_conn_id (str) – reference to a specific S3 / AWS connection
column_list (list[str] | None) – list of column names to use in the insert SQL.
commit_every (int) – The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction.
parser (Callable[[str], Iterable[Iterable]]) –
parser function that takes a filepath as input and returns an iterable. e.g. to use a CSV parser that yields rows line-by-line, pass the following function:
- def parse_csv(filepath):
import csv
- with open(filepath, newline=””) as file:
yield from csv.reader(file)
- template_fields: Sequence[str] = ('s3_bucket', 's3_key', 'schema', 'table', 'column_list', 'sql_conn_id')[source]¶