Source code for tests.system.providers.amazon.aws.example_sagemaker_endpoint

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
from datetime import datetime

import boto3

from airflow import DAG
from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.providers.amazon.aws.operators.s3 import (
    S3CreateBucketOperator,
    S3CreateObjectOperator,
    S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.operators.sagemaker import (
    SageMakerDeleteModelOperator,
    SageMakerEndpointConfigOperator,
    SageMakerEndpointOperator,
    SageMakerModelOperator,
    SageMakerTrainingOperator,
)
from airflow.providers.amazon.aws.sensors.sagemaker import SageMakerEndpointSensor
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import ENV_ID_KEY, SystemTestContextBuilder, purge_logs

[docs]DAG_ID = 'example_sagemaker_endpoint'
# Externally fetched variables:
[docs]ROLE_ARN_KEY = 'ROLE_ARN'
# The URI of a Docker image for handling KNN model training. # To find the URI of a free Amazon-provided image that can be used, substitute your # desired region in the following link and find the URI under "Registry Path". # https://docs.aws.amazon.com/sagemaker/latest/dg/ecr-us-east-1.html#knn-us-east-1.title # This URI should be in the format of {12-digits}.dkr.ecr.{region}.amazonaws.com/knn
[docs]KNN_IMAGE_URI_KEY = 'KNN_IMAGE_URI'
[docs]sys_test_context_task = ( SystemTestContextBuilder().add_variable(KNN_IMAGE_URI_KEY).add_variable(ROLE_ARN_KEY).build()
) # For an example of how to obtain the following train and test data, please see # https://github.com/apache/airflow/blob/main/airflow/providers/amazon/aws/example_dags/example_sagemaker.py
[docs]TRAIN_DATA = '0,4.9,2.5,4.5,1.7\n1,7.0,3.2,4.7,1.4\n0,7.3,2.9,6.3,1.8\n2,5.1,3.5,1.4,0.2\n'
[docs]SAMPLE_TEST_DATA = '6.4,3.2,4.5,1.5'
@task
[docs]def call_endpoint(endpoint_name): response = ( boto3.Session() .client('sagemaker-runtime') .invoke_endpoint( EndpointName=endpoint_name, ContentType='text/csv', Body=SAMPLE_TEST_DATA, ) ) return json.loads(response["Body"].read().decode())['predictions']
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_endpoint_config(endpoint_config_job_name): boto3.client('sagemaker').delete_endpoint_config(EndpointConfigName=endpoint_config_job_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_endpoint(endpoint_name): boto3.client('sagemaker').delete_endpoint(EndpointName=endpoint_name)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_logs(env_id, endpoint_name): generated_logs = [ # Format: ('log group name', 'log stream prefix') ('/aws/sagemaker/TrainingJobs', env_id), (f'/aws/sagemaker/Endpoints/{endpoint_name}', env_id), ] purge_logs(generated_logs)
@task
[docs]def set_up(env_id, knn_image_uri, role_arn, ti=None): bucket_name = f'{env_id}-sagemaker' input_data_s3_key = f'{env_id}/input-data' training_output_s3_key = f'{env_id}/results' endpoint_config_job_name = f'{env_id}-endpoint-config' endpoint_name = f'{env_id}-endpoint' model_name = f'{env_id}-KNN-model' training_job_name = f'{env_id}-train' training_config = { 'TrainingJobName': training_job_name, 'RoleArn': role_arn, 'AlgorithmSpecification': { "TrainingImage": knn_image_uri, "TrainingInputMode": "File", }, 'HyperParameters': { 'predictor_type': 'classifier', 'feature_dim': '4', 'k': '3', 'sample_size': str(TRAIN_DATA.count('\n') - 1), }, 'InputDataConfig': [ { 'ChannelName': 'train', 'CompressionType': 'None', 'ContentType': 'text/csv', 'DataSource': { 'S3DataSource': { 'S3DataDistributionType': 'FullyReplicated', 'S3DataType': 'S3Prefix', 'S3Uri': f's3://{bucket_name}/{input_data_s3_key}/train.csv', } }, } ], 'OutputDataConfig': {'S3OutputPath': f's3://{bucket_name}/{training_output_s3_key}/'}, 'ResourceConfig': { 'InstanceCount': 1, 'InstanceType': 'ml.m5.large', 'VolumeSizeInGB': 1, }, 'StoppingCondition': {'MaxRuntimeInSeconds': 6 * 60}, } model_config = { 'ModelName': model_name, 'ExecutionRoleArn': role_arn, 'PrimaryContainer': { 'Mode': 'SingleModel', 'Image': knn_image_uri, 'ModelDataUrl': f's3://{bucket_name}/{training_output_s3_key}/{training_job_name}/output/model.tar.gz', # noqa: E501 }, } endpoint_config_config = { 'EndpointConfigName': endpoint_config_job_name, 'ProductionVariants': [ { 'VariantName': f'{env_id}-demo', 'ModelName': model_name, 'InstanceType': 'ml.t2.medium', 'InitialInstanceCount': 1, }, ], } deploy_endpoint_config = { 'EndpointName': endpoint_name, 'EndpointConfigName': endpoint_config_job_name, } ti.xcom_push(key='bucket_name', value=bucket_name) ti.xcom_push(key='input_data_s3_key', value=input_data_s3_key) ti.xcom_push(key='model_name', value=model_name) ti.xcom_push(key='endpoint_name', value=endpoint_name) ti.xcom_push(key='endpoint_config_job_name', value=endpoint_config_job_name) ti.xcom_push(key='training_config', value=training_config) ti.xcom_push(key='model_config', value=model_config) ti.xcom_push(key='endpoint_config_config', value=endpoint_config_config) ti.xcom_push(key='deploy_endpoint_config', value=deploy_endpoint_config)
with DAG( dag_id=DAG_ID, schedule='@once', start_date=datetime(2021, 1, 1), tags=['example'], catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
test_setup = set_up( env_id=test_context[ENV_ID_KEY], knn_image_uri=test_context[KNN_IMAGE_URI_KEY], role_arn=test_context[ROLE_ARN_KEY], ) create_bucket = S3CreateBucketOperator( task_id='create_bucket', bucket_name=test_setup['bucket_name'], ) upload_data = S3CreateObjectOperator( task_id='upload_data', s3_bucket=test_setup['bucket_name'], s3_key=f'{test_setup["input_data_s3_key"]}/train.csv', data=TRAIN_DATA, ) train_model = SageMakerTrainingOperator( task_id='train_model', config=test_setup['training_config'], ) create_model = SageMakerModelOperator( task_id='create_model', config=test_setup['model_config'], ) # [START howto_operator_sagemaker_endpoint_config] configure_endpoint = SageMakerEndpointConfigOperator( task_id='configure_endpoint', config=test_setup['endpoint_config_config'], ) # [END howto_operator_sagemaker_endpoint_config] # [START howto_operator_sagemaker_endpoint] deploy_endpoint = SageMakerEndpointOperator( task_id='deploy_endpoint', config=test_setup['deploy_endpoint_config'], # Waits by default, setting as False to demonstrate the Sensor below. wait_for_completion=False, ) # [END howto_operator_sagemaker_endpoint] # [START howto_sensor_sagemaker_endpoint] await_endpoint = SageMakerEndpointSensor( task_id='await_endpoint', endpoint_name=test_setup['endpoint_name'], ) # [END howto_sensor_sagemaker_endpoint] delete_model = SageMakerDeleteModelOperator( task_id='delete_model', trigger_rule=TriggerRule.ALL_DONE, config={'ModelName': test_setup['model_name']}, ) delete_bucket = S3DeleteBucketOperator( task_id='delete_bucket', trigger_rule=TriggerRule.ALL_DONE, bucket_name=test_setup['bucket_name'], force_delete=True, ) chain( # TEST SETUP test_context, test_setup, create_bucket, upload_data, # TEST BODY train_model, create_model, configure_endpoint, deploy_endpoint, await_endpoint, call_endpoint(test_setup['endpoint_name']), # TEST TEARDOWN delete_endpoint_config(test_setup['endpoint_config_job_name']), delete_endpoint(test_setup['endpoint_name']), delete_model, delete_bucket, delete_logs(test_context[ENV_ID_KEY], test_setup['endpoint_name']), ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?