Source code for airflow.providers.amazon.aws.operators.emr

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import ast
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from uuid import uuid4

from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.emr import EmrContainerHook, EmrHook, EmrServerlessHook
from airflow.providers.amazon.aws.links.emr import EmrClusterLink
from airflow.providers.amazon.aws.sensors.emr import EmrServerlessApplicationSensor, EmrServerlessJobSensor

if TYPE_CHECKING:
    from airflow.utils.context import Context

from airflow.compat.functools import cached_property


[docs]class EmrAddStepsOperator(BaseOperator): """ An operator that adds steps to an existing EMR job_flow. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrAddStepsOperator` :param job_flow_id: id of the JobFlow to add steps to. (templated) :param job_flow_name: name of the JobFlow to add steps to. Use as an alternative to passing job_flow_id. will search for id of JobFlow with matching name in one of the states in param cluster_states. Exactly one cluster like this should exist or will fail. (templated) :param cluster_states: Acceptable cluster states when searching for JobFlow id by job_flow_name. (templated) :param aws_conn_id: aws connection to uses :param steps: boto3 style steps or reference to a steps file (must be '.json') to be added to the jobflow. (templated) :param do_xcom_push: if True, job_flow_id is pushed to XCom with key job_flow_id. """
[docs] template_fields: Sequence[str] = ('job_flow_id', 'job_flow_name', 'cluster_states', 'steps')
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"steps": "json"}
[docs] ui_color = '#f9c915'
def __init__( self, *, job_flow_id: Optional[str] = None, job_flow_name: Optional[str] = None, cluster_states: Optional[List[str]] = None, aws_conn_id: str = 'aws_default', steps: Optional[Union[List[dict], str]] = None, **kwargs, ): if not (job_flow_id is None) ^ (job_flow_name is None): raise AirflowException('Exactly one of job_flow_id or job_flow_name must be specified.') super().__init__(**kwargs) cluster_states = cluster_states or [] steps = steps or [] self.aws_conn_id = aws_conn_id self.job_flow_id = job_flow_id self.job_flow_name = job_flow_name self.cluster_states = cluster_states self.steps = steps
[docs] def execute(self, context: 'Context') -> List[str]: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr = emr_hook.get_conn() job_flow_id = self.job_flow_id or emr_hook.get_cluster_id_by_name( str(self.job_flow_name), self.cluster_states ) if not job_flow_id: raise AirflowException(f'No cluster found for name: {self.job_flow_name}') if self.do_xcom_push: context['ti'].xcom_push(key='job_flow_id', value=job_flow_id) EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=job_flow_id, ) self.log.info('Adding steps to %s', job_flow_id) # steps may arrive as a string representing a list # e.g. if we used XCom or a file then: steps="[{ step1 }, { step2 }]" steps = self.steps if isinstance(steps, str): steps = ast.literal_eval(steps) response = emr.add_job_flow_steps(JobFlowId=job_flow_id, Steps=steps) if not response['ResponseMetadata']['HTTPStatusCode'] == 200: raise AirflowException(f'Adding steps failed: {response}') else: self.log.info('Steps %s added to JobFlow', response['StepIds']) return response['StepIds']
[docs]class EmrEksCreateClusterOperator(BaseOperator): """ An operator that creates EMR on EKS virtual clusters. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrEksCreateClusterOperator` :param virtual_cluster_name: The name of the EMR EKS virtual cluster to create. :param eks_cluster_name: The EKS cluster used by the EMR virtual cluster. :param eks_namespace: namespace used by the EKS cluster. :param virtual_cluster_id: The EMR on EKS virtual cluster id. :param aws_conn_id: The Airflow connection used for AWS credentials. :param tags: The tags assigned to created cluster. Defaults to None """
[docs] template_fields: Sequence[str] = ( "virtual_cluster_name", "eks_cluster_name", "eks_namespace",
)
[docs] ui_color = "#f9c915"
def __init__( self, *, virtual_cluster_name: str, eks_cluster_name: str, eks_namespace: str, virtual_cluster_id: str = '', aws_conn_id: str = "aws_default", tags: Optional[dict] = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.virtual_cluster_name = virtual_cluster_name self.eks_cluster_name = eks_cluster_name self.eks_namespace = eks_namespace self.virtual_cluster_id = virtual_cluster_id self.aws_conn_id = aws_conn_id self.tags = tags @cached_property
[docs] def hook(self) -> EmrContainerHook: """Create and return an EmrContainerHook.""" return EmrContainerHook(self.aws_conn_id)
[docs] def execute(self, context: 'Context') -> Optional[str]: """Create EMR on EKS virtual Cluster""" self.virtual_cluster_id = self.hook.create_emr_on_eks_cluster( self.virtual_cluster_name, self.eks_cluster_name, self.eks_namespace, self.tags ) return self.virtual_cluster_id
[docs]class EmrContainerOperator(BaseOperator): """ An operator that submits jobs to EMR on EKS virtual clusters. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrContainerOperator` :param name: The name of the job run. :param virtual_cluster_id: The EMR on EKS virtual cluster ID :param execution_role_arn: The IAM role ARN associated with the job run. :param release_label: The Amazon EMR release version to use for the job run. :param job_driver: Job configuration details, e.g. the Spark job parameters. :param configuration_overrides: The configuration overrides for the job run, specifically either application configuration or monitoring configuration. :param client_request_token: The client idempotency token of the job run request. Use this if you want to specify a unique ID to prevent two jobs from getting started. If no token is provided, a UUIDv4 token will be generated for you. :param aws_conn_id: The Airflow connection used for AWS credentials. :param wait_for_completion: Whether or not to wait in the operator for the job to complete. :param poll_interval: Time (in seconds) to wait between two consecutive calls to check query status on EMR :param max_tries: Maximum number of times to wait for the job run to finish. Defaults to None, which will poll until the job is *not* in a pending, submitted, or running state. :param tags: The tags assigned to job runs. Defaults to None """
[docs] template_fields: Sequence[str] = ( "name", "virtual_cluster_id", "execution_role_arn", "release_label", "job_driver",
)
[docs] ui_color = "#f9c915"
def __init__( self, *, name: str, virtual_cluster_id: str, execution_role_arn: str, release_label: str, job_driver: dict, configuration_overrides: Optional[dict] = None, client_request_token: Optional[str] = None, aws_conn_id: str = "aws_default", wait_for_completion: bool = True, poll_interval: int = 30, max_tries: Optional[int] = None, tags: Optional[dict] = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.name = name self.virtual_cluster_id = virtual_cluster_id self.execution_role_arn = execution_role_arn self.release_label = release_label self.job_driver = job_driver self.configuration_overrides = configuration_overrides or {} self.aws_conn_id = aws_conn_id self.client_request_token = client_request_token or str(uuid4()) self.wait_for_completion = wait_for_completion self.poll_interval = poll_interval self.max_tries = max_tries self.tags = tags self.job_id: Optional[str] = None @cached_property
[docs] def hook(self) -> EmrContainerHook: """Create and return an EmrContainerHook.""" return EmrContainerHook( self.aws_conn_id, virtual_cluster_id=self.virtual_cluster_id,
)
[docs] def execute(self, context: 'Context') -> Optional[str]: """Run job on EMR Containers""" self.job_id = self.hook.submit_job( self.name, self.execution_role_arn, self.release_label, self.job_driver, self.configuration_overrides, self.client_request_token, self.tags, ) if self.wait_for_completion: query_status = self.hook.poll_query_status(self.job_id, self.max_tries, self.poll_interval) if query_status in EmrContainerHook.FAILURE_STATES: error_message = self.hook.get_job_failure_reason(self.job_id) raise AirflowException( f"EMR Containers job failed. Final state is {query_status}. " f"query_execution_id is {self.job_id}. Error: {error_message}" ) elif not query_status or query_status in EmrContainerHook.INTERMEDIATE_STATES: raise AirflowException( f"Final state of EMR Containers job is {query_status}. " f"Max tries of poll status exceeded, query_execution_id is {self.job_id}." ) return self.job_id
[docs] def on_kill(self) -> None: """Cancel the submitted job run""" if self.job_id: self.log.info("Stopping job run with jobId - %s", self.job_id) response = self.hook.stop_query(self.job_id) http_status_code = None try: http_status_code = response["ResponseMetadata"]["HTTPStatusCode"] except Exception as ex: self.log.error("Exception while cancelling query: %s", ex) finally: if http_status_code is None or http_status_code != 200: self.log.error("Unable to request query cancel on EMR. Exiting") else: self.log.info( "Polling EMR for query with id %s to reach final state", self.job_id, ) self.hook.poll_query_status(self.job_id)
[docs]class EmrCreateJobFlowOperator(BaseOperator): """ Creates an EMR JobFlow, reading the config from the EMR connection. A dictionary of JobFlow overrides can be passed that override the config from the connection. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrCreateJobFlowOperator` :param aws_conn_id: The Airflow connection used for AWS credentials. If this is None or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node) :param emr_conn_id: emr connection to use for run_job_flow request body. This will be overridden by the job_flow_overrides param :param job_flow_overrides: boto3 style arguments or reference to an arguments file (must be '.json') to override emr_connection extra. (templated) :param region_name: Region named passed to EmrHook """
[docs] template_fields: Sequence[str] = ('job_flow_overrides',)
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"job_flow_overrides": "json"}
[docs] ui_color = '#f9c915'
def __init__( self, *, aws_conn_id: str = 'aws_default', emr_conn_id: str = 'emr_default', job_flow_overrides: Optional[Union[str, Dict[str, Any]]] = None, region_name: Optional[str] = None, **kwargs, ): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.emr_conn_id = emr_conn_id if job_flow_overrides is None: job_flow_overrides = {} self.job_flow_overrides = job_flow_overrides self.region_name = region_name
[docs] def execute(self, context: 'Context') -> str: emr = EmrHook( aws_conn_id=self.aws_conn_id, emr_conn_id=self.emr_conn_id, region_name=self.region_name ) self.log.info( 'Creating JobFlow using aws-conn-id: %s, emr-conn-id: %s', self.aws_conn_id, self.emr_conn_id ) if isinstance(self.job_flow_overrides, str): job_flow_overrides: Dict[str, Any] = ast.literal_eval(self.job_flow_overrides) self.job_flow_overrides = job_flow_overrides else: job_flow_overrides = self.job_flow_overrides response = emr.create_job_flow(job_flow_overrides) if not response['ResponseMetadata']['HTTPStatusCode'] == 200: raise AirflowException(f'JobFlow creation failed: {response}') else: job_flow_id = response['JobFlowId'] self.log.info('JobFlow with id %s created', job_flow_id) EmrClusterLink.persist( context=context, operator=self, region_name=emr.conn_region_name, aws_partition=emr.conn_partition, job_flow_id=job_flow_id, ) return job_flow_id
[docs]class EmrModifyClusterOperator(BaseOperator): """ An operator that modifies an existing EMR cluster. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrModifyClusterOperator` :param cluster_id: cluster identifier :param step_concurrency_level: Concurrency of the cluster :param aws_conn_id: aws connection to uses :param do_xcom_push: if True, cluster_id is pushed to XCom with key cluster_id. """
[docs] template_fields: Sequence[str] = ('cluster_id', 'step_concurrency_level')
[docs] template_ext: Sequence[str] = ()
[docs] ui_color = '#f9c915'
def __init__( self, *, cluster_id: str, step_concurrency_level: int, aws_conn_id: str = 'aws_default', **kwargs ): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.cluster_id = cluster_id self.step_concurrency_level = step_concurrency_level
[docs] def execute(self, context: 'Context') -> int: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr = emr_hook.get_conn() if self.do_xcom_push: context['ti'].xcom_push(key='cluster_id', value=self.cluster_id) EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.cluster_id, ) self.log.info('Modifying cluster %s', self.cluster_id) response = emr.modify_cluster( ClusterId=self.cluster_id, StepConcurrencyLevel=self.step_concurrency_level ) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'Modify cluster failed: {response}') else: self.log.info('Steps concurrency level %d', response['StepConcurrencyLevel']) return response['StepConcurrencyLevel']
[docs]class EmrTerminateJobFlowOperator(BaseOperator): """ Operator to terminate EMR JobFlows. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrTerminateJobFlowOperator` :param job_flow_id: id of the JobFlow to terminate. (templated) :param aws_conn_id: aws connection to uses """
[docs] template_fields: Sequence[str] = ('job_flow_id',)
[docs] template_ext: Sequence[str] = ()
[docs] ui_color = '#f9c915'
def __init__(self, *, job_flow_id: str, aws_conn_id: str = 'aws_default', **kwargs): super().__init__(**kwargs) self.job_flow_id = job_flow_id self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: 'Context') -> None: emr_hook = EmrHook(aws_conn_id=self.aws_conn_id) emr = emr_hook.get_conn() EmrClusterLink.persist( context=context, operator=self, region_name=emr_hook.conn_region_name, aws_partition=emr_hook.conn_partition, job_flow_id=self.job_flow_id, ) self.log.info('Terminating JobFlow %s', self.job_flow_id) response = emr.terminate_job_flows(JobFlowIds=[self.job_flow_id]) if not response['ResponseMetadata']['HTTPStatusCode'] == 200: raise AirflowException(f'JobFlow termination failed: {response}') else: self.log.info('JobFlow with id %s terminated', self.job_flow_id)
[docs]class EmrServerlessCreateApplicationOperator(BaseOperator): """ Operator to create Serverless EMR Application .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessCreateApplicationOperator` :param release_label: The EMR release version associated with the application. :param job_type: The type of application you want to start, such as Spark or Hive. :param wait_for_completion: If true, wait for the Application to start before returning. Default to True :param client_request_token: The client idempotency token of the application to create. Its value must be unique for each request. :param config: Optional dictionary for arbitrary parameters to the boto API create_application call. :param aws_conn_id: AWS connection to use """ def __init__( self, release_label: str, job_type: str, client_request_token: str = '', config: Optional[dict] = None, wait_for_completion: bool = True, aws_conn_id: str = 'aws_default', **kwargs, ): self.aws_conn_id = aws_conn_id self.release_label = release_label self.job_type = job_type self.wait_for_completion = wait_for_completion self.kwargs = kwargs self.config = config or {} super().__init__(**kwargs) self.client_request_token = client_request_token or str(uuid4()) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context'): response = self.hook.conn.create_application( clientToken=self.client_request_token, releaseLabel=self.release_label, type=self.job_type, **self.config, ) application_id = response['applicationId'] if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'Application Creation failed: {response}') self.log.info('EMR serverless application created: %s', application_id) # This should be replaced with a boto waiter when available. self.hook.waiter( get_state_callable=self.hook.conn.get_application, get_state_args={'applicationId': application_id}, parse_response=['application', 'state'], desired_state={'CREATED'}, failure_states=EmrServerlessApplicationSensor.FAILURE_STATES, object_type='application', action='created', ) self.log.info('Starting application %s', application_id) self.hook.conn.start_application(applicationId=application_id) if self.wait_for_completion: # This should be replaced with a boto waiter when available. self.hook.waiter( get_state_callable=self.hook.conn.get_application, get_state_args={'applicationId': application_id}, parse_response=['application', 'state'], desired_state={'STARTED'}, failure_states=EmrServerlessApplicationSensor.FAILURE_STATES, object_type='application', action='started', ) return application_id
[docs]class EmrServerlessStartJobOperator(BaseOperator): """ Operator to start EMR Serverless job. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessStartJobOperator` :param application_id: ID of the EMR Serverless application to start. :param execution_role_arn: ARN of role to perform action. :param job_driver: Driver that the job runs on. :param configuration_overrides: Configuration specifications to override existing configurations. :param client_request_token: The client idempotency token of the application to create. Its value must be unique for each request. :param config: Optional dictionary for arbitrary parameters to the boto API start_job_run call. :param wait_for_completion: If true, waits for the job to start before returning. Defaults to True. :param aws_conn_id: AWS connection to use """
[docs] template_fields: Sequence[str] = ( 'application_id', 'execution_role_arn', 'job_driver', 'configuration_overrides',
) def __init__( self, application_id: str, execution_role_arn: str, job_driver: dict, configuration_overrides: Optional[dict], client_request_token: str = '', config: Optional[dict] = None, wait_for_completion: bool = True, aws_conn_id: str = 'aws_default', **kwargs, ): self.aws_conn_id = aws_conn_id self.application_id = application_id self.execution_role_arn = execution_role_arn self.job_driver = job_driver self.configuration_overrides = configuration_overrides self.wait_for_completion = wait_for_completion self.config = config or {} super().__init__(**kwargs) self.client_request_token = client_request_token or str(uuid4()) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context') -> Dict: self.log.info('Starting job on Application: %s', self.application_id) app_state = self.hook.conn.get_application(applicationId=self.application_id)['application']['state'] if app_state not in EmrServerlessApplicationSensor.SUCCESS_STATES: self.hook.conn.start_application(applicationId=self.application_id) self.hook.waiter( get_state_callable=self.hook.conn.get_application, get_state_args={'applicationId': self.application_id}, parse_response=['application', 'state'], desired_state={'STARTED'}, failure_states=EmrServerlessApplicationSensor.FAILURE_STATES, object_type='application', action='started', ) response = self.hook.conn.start_job_run( clientToken=self.client_request_token, applicationId=self.application_id, executionRoleArn=self.execution_role_arn, jobDriver=self.job_driver, configurationOverrides=self.configuration_overrides, **self.config, ) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'EMR serverless job failed to start: {response}') self.log.info('EMR serverless job started: %s', response['jobRunId']) if self.wait_for_completion: # This should be replaced with a boto waiter when available. self.hook.waiter( get_state_callable=self.hook.conn.get_job_run, get_state_args={ 'applicationId': self.application_id, 'jobRunId': response['jobRunId'], }, parse_response=['jobRun', 'state'], desired_state=EmrServerlessJobSensor.TERMINAL_STATES, failure_states=EmrServerlessJobSensor.FAILURE_STATES, object_type='job', action='run', ) return response['jobRunId']
[docs]class EmrServerlessDeleteApplicationOperator(BaseOperator): """ Operator to delete EMR Serverless application .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:EmrServerlessDeleteApplicationOperator` :param application_id: ID of the EMR Serverless application to delete. :param wait_for_completion: If true, wait for the Application to start before returning. Default to True :param aws_conn_id: AWS connection to use """
[docs] template_fields: Sequence[str] = ('application_id',)
def __init__( self, application_id: str, wait_for_completion: bool = True, aws_conn_id: str = 'aws_default', **kwargs, ): self.aws_conn_id = aws_conn_id self.application_id = application_id self.wait_for_completion = wait_for_completion super().__init__(**kwargs) @cached_property
[docs] def hook(self) -> EmrServerlessHook: """Create and return an EmrServerlessHook.""" return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context') -> None: self.log.info('Stopping application: %s', self.application_id) self.hook.conn.stop_application(applicationId=self.application_id) # This should be replaced with a boto waiter when available. self.hook.waiter( get_state_callable=self.hook.conn.get_application, get_state_args={ 'applicationId': self.application_id, }, parse_response=['application', 'state'], desired_state=EmrServerlessApplicationSensor.FAILURE_STATES, failure_states=set(), object_type='application', action='stopped', ) self.log.info('Deleting application: %s', self.application_id) response = self.hook.conn.delete_application(applicationId=self.application_id) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'Application deletion failed: {response}') if self.wait_for_completion: # This should be replaced with a boto waiter when available. self.hook.waiter( get_state_callable=self.hook.conn.get_application, get_state_args={'applicationId': self.application_id}, parse_response=['application', 'state'], desired_state={'TERMINATED'}, failure_states=EmrServerlessApplicationSensor.FAILURE_STATES, object_type='application', action='deleted', ) self.log.info('EMR serverless application deleted')

Was this entry helpful?