# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datetime import datetime
from typing import List, Optional, Tuple
import boto3
from botocore.client import BaseClient
from airflow import DAG
from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.operators.python import get_current_context
from airflow.providers.amazon.aws.operators.glue import GlueJobOperator
from airflow.providers.amazon.aws.operators.glue_crawler import GlueCrawlerOperator
from airflow.providers.amazon.aws.operators.s3 import (
S3CreateBucketOperator,
S3CreateObjectOperator,
S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.sensors.glue import GlueJobSensor
from airflow.providers.amazon.aws.sensors.glue_crawler import GlueCrawlerSensor
from airflow.utils.trigger_rule import TriggerRule
from tests.system.providers.amazon.aws.utils import ENV_ID_KEY, SystemTestContextBuilder, purge_logs
# Externally fetched variables:
# Role needs S3 putobject/getobject access as well as the glue service role,
# see docs here: https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
[docs]ROLE_ARN_KEY = 'ROLE_ARN'
[docs]sys_test_context_task = SystemTestContextBuilder().add_variable(ROLE_ARN_KEY).build()
# Example csv data used as input to the example AWS Glue Job.
[docs]EXAMPLE_CSV = '''
apple,0.5
milk,2.5
bread,4.0
'''
# Example Spark script to operate on the above sample csv data.
[docs]EXAMPLE_SCRIPT = '''
from pyspark.context import SparkContext
from awsglue.context import GlueContext
glueContext = GlueContext(SparkContext.getOrCreate())
datasource = glueContext.create_dynamic_frame.from_catalog(
database='{db_name}', table_name='input')
print('There are %s items in the table' % datasource.count())
datasource.toDF().write.format('csv').mode("append").save('s3://{bucket_name}/output')
'''
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def delete_logs(job_id: str, glue_crawler_name: str) -> None:
"""
Glue generates four Cloudwatch log groups and multiple log streams and leaves them.
"""
generated_log_groups: List[Tuple[str, Optional[str]]] = [
# Format: ('log group name', 'log stream prefix')
('/aws-glue/crawlers', glue_crawler_name),
('/aws-glue/jobs/logs-v2', job_id),
('/aws-glue/jobs/error', job_id),
('/aws-glue/jobs/output', job_id),
]
purge_logs(generated_log_groups)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs]def glue_cleanup(glue_crawler_name: str, glue_job_name: str, glue_db_name: str) -> None:
client: BaseClient = boto3.client('glue')
client.delete_crawler(Name=glue_crawler_name)
client.delete_job(JobName=glue_job_name)
client.delete_database(Name=glue_db_name)
@task
[docs]def set_up(env_id, role_arn):
glue_crawler_name = f'{env_id}_crawler'
glue_db_name = f'{env_id}_glue_db'
glue_job_name = f'{env_id}_glue_job'
bucket_name = f'{env_id}-bucket'
role_name = role_arn.split('/')[-1]
glue_crawler_config = {
'Name': glue_crawler_name,
'Role': role_arn,
'DatabaseName': glue_db_name,
'Targets': {'S3Targets': [{'Path': f'{bucket_name}/input'}]},
}
ti = get_current_context()['ti']
ti.xcom_push(key='bucket_name', value=bucket_name)
ti.xcom_push(key='glue_db_name', value=glue_db_name)
ti.xcom_push(key='glue_crawler_config', value=glue_crawler_config)
ti.xcom_push(key='glue_crawler_name', value=glue_crawler_name)
ti.xcom_push(key='glue_job_name', value=glue_job_name)
ti.xcom_push(key='role_name', value=role_name)
with DAG(
dag_id=DAG_ID,
schedule_interval='@once',
start_date=datetime(2021, 1, 1),
tags=['example'],
catchup=False,
) as dag:
[docs] test_context = sys_test_context_task()
test_setup = set_up(
env_id=test_context[ENV_ID_KEY],
role_arn=test_context[ROLE_ARN_KEY],
)
create_bucket = S3CreateBucketOperator(
task_id='create_bucket',
bucket_name=test_setup['bucket_name'],
)
upload_csv = S3CreateObjectOperator(
task_id='upload_csv',
s3_bucket=test_setup['bucket_name'],
s3_key='input/input.csv',
data=EXAMPLE_CSV,
replace=True,
)
upload_script = S3CreateObjectOperator(
task_id='upload_script',
s3_bucket=test_setup['bucket_name'],
s3_key='etl_script.py',
data=EXAMPLE_SCRIPT.format(db_name=test_setup['glue_db_name'], bucket_name=test_setup['bucket_name']),
replace=True,
)
# [START howto_operator_glue_crawler]
crawl_s3 = GlueCrawlerOperator(
task_id='crawl_s3',
config=test_setup['glue_crawler_config'],
# Waits by default, set False to test the Sensor below
wait_for_completion=False,
)
# [END howto_operator_glue_crawler]
# [START howto_sensor_glue_crawler]
wait_for_crawl = GlueCrawlerSensor(
task_id='wait_for_crawl',
crawler_name=test_setup['glue_crawler_name'],
)
# [END howto_sensor_glue_crawler]
# [START howto_operator_glue]
submit_glue_job = GlueJobOperator(
task_id='submit_glue_job',
job_name=test_setup['glue_job_name'],
script_location=f's3://{test_setup["bucket_name"]}/etl_script.py',
s3_bucket=test_setup['bucket_name'],
iam_role_name=test_setup['role_name'],
create_job_kwargs={'GlueVersion': '3.0', 'NumberOfWorkers': 2, 'WorkerType': 'G.1X'},
# Waits by default, set False to test the Sensor below
wait_for_completion=False,
)
# [END howto_operator_glue]
# [START howto_sensor_glue]
wait_for_job = GlueJobSensor(
task_id='wait_for_job',
job_name=test_setup['glue_job_name'],
# Job ID extracted from previous Glue Job Operator task
run_id=submit_glue_job.output,
)
# [END howto_sensor_glue]
delete_bucket = S3DeleteBucketOperator(
task_id='delete_bucket',
trigger_rule=TriggerRule.ALL_DONE,
bucket_name=test_setup['bucket_name'],
force_delete=True,
)
clean_up = glue_cleanup(
test_setup['glue_crawler_name'],
test_setup['glue_job_name'],
test_setup['glue_db_name'],
)
chain(
# TEST SETUP
test_context,
test_setup,
create_bucket,
upload_csv,
upload_script,
# TEST BODY
crawl_s3,
wait_for_crawl,
submit_glue_job,
wait_for_job,
# TEST TEARDOWN
clean_up,
delete_bucket,
delete_logs(submit_glue_job.output, test_setup['glue_crawler_name']),
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)