Source code for airflow.providers.amazon.aws.sensors.sagemaker

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import time
from typing import TYPE_CHECKING, Optional, Sequence, Set

from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.sagemaker import LogState, SageMakerHook
from airflow.sensors.base import BaseSensorOperator

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class SageMakerBaseSensor(BaseSensorOperator): """ Contains general sensor behavior for SageMaker. Subclasses should implement get_sagemaker_response() and state_from_response() methods. Subclasses should also implement NON_TERMINAL_STATES and FAILED_STATE methods. """
[docs] ui_color = '#ededed'
def __init__(self, *, aws_conn_id: str = 'aws_default', **kwargs): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.hook: Optional[SageMakerHook] = None
[docs] def get_hook(self) -> SageMakerHook: """Get SageMakerHook.""" if self.hook: return self.hook self.hook = SageMakerHook(aws_conn_id=self.aws_conn_id) return self.hook
[docs] def poke(self, context: 'Context'): response = self.get_sagemaker_response() if response['ResponseMetadata']['HTTPStatusCode'] != 200: self.log.info('Bad HTTP response: %s', response) return False state = self.state_from_response(response) self.log.info('Job currently %s', state) if state in self.non_terminal_states(): return False if state in self.failed_states(): failed_reason = self.get_failed_reason_from_response(response) raise AirflowException(f'Sagemaker job failed for the following reason: {failed_reason}') return True
[docs] def non_terminal_states(self) -> Set[str]: """Placeholder for returning states with should not terminate.""" raise NotImplementedError('Please implement non_terminal_states() in subclass')
[docs] def failed_states(self) -> Set[str]: """Placeholder for returning states with are considered failed.""" raise NotImplementedError('Please implement failed_states() in subclass')
[docs] def get_sagemaker_response(self) -> dict: """Placeholder for checking status of a SageMaker task.""" raise NotImplementedError('Please implement get_sagemaker_response() in subclass')
[docs] def get_failed_reason_from_response(self, response: dict) -> str: """Placeholder for extracting the reason for failure from an AWS response.""" return 'Unknown'
[docs] def state_from_response(self, response: dict) -> str: """Placeholder for extracting the state from an AWS response.""" raise NotImplementedError('Please implement state_from_response() in subclass')
[docs]class SageMakerEndpointSensor(SageMakerBaseSensor): """ Polls the endpoint state until it reaches a terminal state. Raises an AirflowException with the failure reason if a failed state is reached. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerEndpointSensor` :param endpoint_name: Name of the endpoint instance to watch. """
[docs] template_fields: Sequence[str] = ('endpoint_name',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, endpoint_name, **kwargs): super().__init__(**kwargs) self.endpoint_name = endpoint_name
[docs] def non_terminal_states(self): return SageMakerHook.endpoint_non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info('Poking Sagemaker Endpoint %s', self.endpoint_name) return self.get_hook().describe_endpoint(self.endpoint_name)
[docs] def get_failed_reason_from_response(self, response): return response['FailureReason']
[docs] def state_from_response(self, response): return response['EndpointStatus']
[docs]class SageMakerTransformSensor(SageMakerBaseSensor): """ Polls the transform job until it reaches a terminal state. Raises an AirflowException with the failure reason if a failed state is reached. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTransformSensor` :param job_name: Name of the transform job to watch. """
[docs] template_fields: Sequence[str] = ('job_name',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name: str, **kwargs): super().__init__(**kwargs) self.job_name = job_name
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info('Poking Sagemaker Transform Job %s', self.job_name) return self.get_hook().describe_transform_job(self.job_name)
[docs] def get_failed_reason_from_response(self, response): return response['FailureReason']
[docs] def state_from_response(self, response): return response['TransformJobStatus']
[docs]class SageMakerTuningSensor(SageMakerBaseSensor): """ Asks for the state of the tuning state until it reaches a terminal state. Raises an AirflowException with the failure reason if a failed state is reached. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTuningSensor` :param job_name: Name of the tuning instance to watch. """
[docs] template_fields: Sequence[str] = ('job_name',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name: str, **kwargs): super().__init__(**kwargs) self.job_name = job_name
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info('Poking Sagemaker Tuning Job %s', self.job_name) return self.get_hook().describe_tuning_job(self.job_name)
[docs] def get_failed_reason_from_response(self, response): return response['FailureReason']
[docs] def state_from_response(self, response): return response['HyperParameterTuningJobStatus']
[docs]class SageMakerTrainingSensor(SageMakerBaseSensor): """ Polls the training job until it reaches a terminal state. Raises an AirflowException with the failure reason if a failed state is reached. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTrainingSensor` :param job_name: Name of the training job to watch. :param print_log: Prints the cloudwatch log if True; Defaults to True. """
[docs] template_fields: Sequence[str] = ('job_name',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name, print_log=True, **kwargs): super().__init__(**kwargs) self.job_name = job_name self.print_log = print_log self.positions = {} self.stream_names = [] self.instance_count: Optional[int] = None self.state: Optional[int] = None self.last_description = None self.last_describe_job_call = None self.log_resource_inited = False
[docs] def init_log_resource(self, hook: SageMakerHook) -> None: """Set tailing LogState for associated training job.""" description = hook.describe_training_job(self.job_name) self.instance_count = description['ResourceConfig']['InstanceCount'] status = description['TrainingJobStatus'] job_already_completed = status not in self.non_terminal_states() self.state = LogState.COMPLETE if job_already_completed else LogState.TAILING self.last_description = description self.last_describe_job_call = time.monotonic() self.log_resource_inited = True
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): if self.print_log: if not self.log_resource_inited: self.init_log_resource(self.get_hook()) ( self.state, self.last_description, self.last_describe_job_call, ) = self.get_hook().describe_training_job_with_log( self.job_name, self.positions, self.stream_names, self.instance_count, self.state, self.last_description, self.last_describe_job_call, ) else: self.last_description = self.get_hook().describe_training_job(self.job_name) status = self.state_from_response(self.last_description) if (status not in self.non_terminal_states()) and (status not in self.failed_states()): billable_time = ( self.last_description['TrainingEndTime'] - self.last_description['TrainingStartTime'] ) * self.last_description['ResourceConfig']['InstanceCount'] self.log.info('Billable seconds: %s', (int(billable_time.total_seconds()) + 1)) return self.last_description
[docs] def get_failed_reason_from_response(self, response): return response['FailureReason']
[docs] def state_from_response(self, response): return response['TrainingJobStatus']

Was this entry helpful?