#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import ast
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from uuid import uuid4
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.emr import EmrContainerHook, EmrHook, EmrServerlessHook
from airflow.providers.amazon.aws.links.emr import EmrClusterLink
from airflow.providers.amazon.aws.sensors.emr import EmrServerlessApplicationSensor, EmrServerlessJobSensor
if TYPE_CHECKING:
from airflow.utils.context import Context
from airflow.compat.functools import cached_property
[docs]class EmrAddStepsOperator(BaseOperator):
"""
An operator that adds steps to an existing EMR job_flow.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrAddStepsOperator`
:param job_flow_id: id of the JobFlow to add steps to. (templated)
:param job_flow_name: name of the JobFlow to add steps to. Use as an alternative to passing
job_flow_id. will search for id of JobFlow with matching name in one of the states in
param cluster_states. Exactly one cluster like this should exist or will fail. (templated)
:param cluster_states: Acceptable cluster states when searching for JobFlow id by job_flow_name.
(templated)
:param aws_conn_id: aws connection to uses
:param steps: boto3 style steps or reference to a steps file (must be '.json') to
be added to the jobflow. (templated)
:param do_xcom_push: if True, job_flow_id is pushed to XCom with key job_flow_id.
"""
[docs] template_fields: Sequence[str] = ('job_flow_id', 'job_flow_name', 'cluster_states', 'steps')
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"steps": "json"}
def __init__(
self,
*,
job_flow_id: Optional[str] = None,
job_flow_name: Optional[str] = None,
cluster_states: Optional[List[str]] = None,
aws_conn_id: str = 'aws_default',
steps: Optional[Union[List[dict], str]] = None,
**kwargs,
):
if not (job_flow_id is None) ^ (job_flow_name is None):
raise AirflowException('Exactly one of job_flow_id or job_flow_name must be specified.')
super().__init__(**kwargs)
cluster_states = cluster_states or []
steps = steps or []
self.aws_conn_id = aws_conn_id
self.job_flow_id = job_flow_id
self.job_flow_name = job_flow_name
self.cluster_states = cluster_states
self.steps = steps
[docs] def execute(self, context: 'Context') -> List[str]:
emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
emr = emr_hook.get_conn()
job_flow_id = self.job_flow_id or emr_hook.get_cluster_id_by_name(
str(self.job_flow_name), self.cluster_states
)
if not job_flow_id:
raise AirflowException(f'No cluster found for name: {self.job_flow_name}')
if self.do_xcom_push:
context['ti'].xcom_push(key='job_flow_id', value=job_flow_id)
EmrClusterLink.persist(
context=context,
operator=self,
region_name=emr_hook.conn_region_name,
aws_partition=emr_hook.conn_partition,
job_flow_id=job_flow_id,
)
self.log.info('Adding steps to %s', job_flow_id)
# steps may arrive as a string representing a list
# e.g. if we used XCom or a file then: steps="[{ step1 }, { step2 }]"
steps = self.steps
if isinstance(steps, str):
steps = ast.literal_eval(steps)
response = emr.add_job_flow_steps(JobFlowId=job_flow_id, Steps=steps)
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'Adding steps failed: {response}')
else:
self.log.info('Steps %s added to JobFlow', response['StepIds'])
return response['StepIds']
[docs]class EmrContainerOperator(BaseOperator):
"""
An operator that submits jobs to EMR on EKS virtual clusters.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrContainerOperator`
:param name: The name of the job run.
:param virtual_cluster_id: The EMR on EKS virtual cluster ID
:param execution_role_arn: The IAM role ARN associated with the job run.
:param release_label: The Amazon EMR release version to use for the job run.
:param job_driver: Job configuration details, e.g. the Spark job parameters.
:param configuration_overrides: The configuration overrides for the job run,
specifically either application configuration or monitoring configuration.
:param client_request_token: The client idempotency token of the job run request.
Use this if you want to specify a unique ID to prevent two jobs from getting started.
If no token is provided, a UUIDv4 token will be generated for you.
:param aws_conn_id: The Airflow connection used for AWS credentials.
:param wait_for_completion: Whether or not to wait in the operator for the job to complete.
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check query status on EMR
:param max_tries: Maximum number of times to wait for the job run to finish.
Defaults to None, which will poll until the job is *not* in a pending, submitted, or running state.
:param tags: The tags assigned to job runs.
Defaults to None
"""
[docs] template_fields: Sequence[str] = (
"name",
"virtual_cluster_id",
"execution_role_arn",
"release_label",
"job_driver",
)
def __init__(
self,
*,
name: str,
virtual_cluster_id: str,
execution_role_arn: str,
release_label: str,
job_driver: dict,
configuration_overrides: Optional[dict] = None,
client_request_token: Optional[str] = None,
aws_conn_id: str = "aws_default",
wait_for_completion: bool = True,
poll_interval: int = 30,
max_tries: Optional[int] = None,
tags: Optional[dict] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.name = name
self.virtual_cluster_id = virtual_cluster_id
self.execution_role_arn = execution_role_arn
self.release_label = release_label
self.job_driver = job_driver
self.configuration_overrides = configuration_overrides or {}
self.aws_conn_id = aws_conn_id
self.client_request_token = client_request_token or str(uuid4())
self.wait_for_completion = wait_for_completion
self.poll_interval = poll_interval
self.max_tries = max_tries
self.tags = tags
self.job_id: Optional[str] = None
@cached_property
[docs] def hook(self) -> EmrContainerHook:
"""Create and return an EmrContainerHook."""
return EmrContainerHook(
self.aws_conn_id,
virtual_cluster_id=self.virtual_cluster_id,
)
[docs] def execute(self, context: 'Context') -> Optional[str]:
"""Run job on EMR Containers"""
self.job_id = self.hook.submit_job(
self.name,
self.execution_role_arn,
self.release_label,
self.job_driver,
self.configuration_overrides,
self.client_request_token,
self.tags,
)
if self.wait_for_completion:
query_status = self.hook.poll_query_status(self.job_id, self.max_tries, self.poll_interval)
if query_status in EmrContainerHook.FAILURE_STATES:
error_message = self.hook.get_job_failure_reason(self.job_id)
raise AirflowException(
f"EMR Containers job failed. Final state is {query_status}. "
f"query_execution_id is {self.job_id}. Error: {error_message}"
)
elif not query_status or query_status in EmrContainerHook.INTERMEDIATE_STATES:
raise AirflowException(
f"Final state of EMR Containers job is {query_status}. "
f"Max tries of poll status exceeded, query_execution_id is {self.job_id}."
)
return self.job_id
[docs] def on_kill(self) -> None:
"""Cancel the submitted job run"""
if self.job_id:
self.log.info("Stopping job run with jobId - %s", self.job_id)
response = self.hook.stop_query(self.job_id)
http_status_code = None
try:
http_status_code = response["ResponseMetadata"]["HTTPStatusCode"]
except Exception as ex:
self.log.error("Exception while cancelling query: %s", ex)
finally:
if http_status_code is None or http_status_code != 200:
self.log.error("Unable to request query cancel on EMR. Exiting")
else:
self.log.info(
"Polling EMR for query with id %s to reach final state",
self.job_id,
)
self.hook.poll_query_status(self.job_id)
[docs]class EmrCreateJobFlowOperator(BaseOperator):
"""
Creates an EMR JobFlow, reading the config from the EMR connection.
A dictionary of JobFlow overrides can be passed that override
the config from the connection.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrCreateJobFlowOperator`
:param aws_conn_id: The Airflow connection used for AWS credentials.
If this is None or empty then the default boto3 behaviour is used. If
running Airflow in a distributed manner and aws_conn_id is None or
empty, then default boto3 configuration would be used (and must be
maintained on each worker node)
:param emr_conn_id: emr connection to use for run_job_flow request body.
This will be overridden by the job_flow_overrides param
:param job_flow_overrides: boto3 style arguments or reference to an arguments file
(must be '.json') to override emr_connection extra. (templated)
:param region_name: Region named passed to EmrHook
"""
[docs] template_fields: Sequence[str] = ('job_flow_overrides',)
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"job_flow_overrides": "json"}
def __init__(
self,
*,
aws_conn_id: str = 'aws_default',
emr_conn_id: str = 'emr_default',
job_flow_overrides: Optional[Union[str, Dict[str, Any]]] = None,
region_name: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.aws_conn_id = aws_conn_id
self.emr_conn_id = emr_conn_id
if job_flow_overrides is None:
job_flow_overrides = {}
self.job_flow_overrides = job_flow_overrides
self.region_name = region_name
[docs] def execute(self, context: 'Context') -> str:
emr = EmrHook(
aws_conn_id=self.aws_conn_id, emr_conn_id=self.emr_conn_id, region_name=self.region_name
)
self.log.info(
'Creating JobFlow using aws-conn-id: %s, emr-conn-id: %s', self.aws_conn_id, self.emr_conn_id
)
if isinstance(self.job_flow_overrides, str):
job_flow_overrides: Dict[str, Any] = ast.literal_eval(self.job_flow_overrides)
self.job_flow_overrides = job_flow_overrides
else:
job_flow_overrides = self.job_flow_overrides
response = emr.create_job_flow(job_flow_overrides)
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'JobFlow creation failed: {response}')
else:
job_flow_id = response['JobFlowId']
self.log.info('JobFlow with id %s created', job_flow_id)
EmrClusterLink.persist(
context=context,
operator=self,
region_name=emr.conn_region_name,
aws_partition=emr.conn_partition,
job_flow_id=job_flow_id,
)
return job_flow_id
[docs]class EmrModifyClusterOperator(BaseOperator):
"""
An operator that modifies an existing EMR cluster.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrModifyClusterOperator`
:param cluster_id: cluster identifier
:param step_concurrency_level: Concurrency of the cluster
:param aws_conn_id: aws connection to uses
:param do_xcom_push: if True, cluster_id is pushed to XCom with key cluster_id.
"""
[docs] template_fields: Sequence[str] = ('cluster_id', 'step_concurrency_level')
[docs] template_ext: Sequence[str] = ()
def __init__(
self, *, cluster_id: str, step_concurrency_level: int, aws_conn_id: str = 'aws_default', **kwargs
):
super().__init__(**kwargs)
self.aws_conn_id = aws_conn_id
self.cluster_id = cluster_id
self.step_concurrency_level = step_concurrency_level
[docs] def execute(self, context: 'Context') -> int:
emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
emr = emr_hook.get_conn()
if self.do_xcom_push:
context['ti'].xcom_push(key='cluster_id', value=self.cluster_id)
EmrClusterLink.persist(
context=context,
operator=self,
region_name=emr_hook.conn_region_name,
aws_partition=emr_hook.conn_partition,
job_flow_id=self.cluster_id,
)
self.log.info('Modifying cluster %s', self.cluster_id)
response = emr.modify_cluster(
ClusterId=self.cluster_id, StepConcurrencyLevel=self.step_concurrency_level
)
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'Modify cluster failed: {response}')
else:
self.log.info('Steps concurrency level %d', response['StepConcurrencyLevel'])
return response['StepConcurrencyLevel']
[docs]class EmrTerminateJobFlowOperator(BaseOperator):
"""
Operator to terminate EMR JobFlows.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrTerminateJobFlowOperator`
:param job_flow_id: id of the JobFlow to terminate. (templated)
:param aws_conn_id: aws connection to uses
"""
[docs] template_fields: Sequence[str] = ('job_flow_id',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_flow_id: str, aws_conn_id: str = 'aws_default', **kwargs):
super().__init__(**kwargs)
self.job_flow_id = job_flow_id
self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: 'Context') -> None:
emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
emr = emr_hook.get_conn()
EmrClusterLink.persist(
context=context,
operator=self,
region_name=emr_hook.conn_region_name,
aws_partition=emr_hook.conn_partition,
job_flow_id=self.job_flow_id,
)
self.log.info('Terminating JobFlow %s', self.job_flow_id)
response = emr.terminate_job_flows(JobFlowIds=[self.job_flow_id])
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'JobFlow termination failed: {response}')
else:
self.log.info('JobFlow with id %s terminated', self.job_flow_id)
[docs]class EmrServerlessCreateApplicationOperator(BaseOperator):
"""
Operator to create Serverless EMR Application
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrServerlessCreateApplicationOperator`
:param release_label: The EMR release version associated with the application.
:param job_type: The type of application you want to start, such as Spark or Hive.
:param wait_for_completion: If true, wait for the Application to start before returning. Default to True
:param client_request_token: The client idempotency token of the application to create.
Its value must be unique for each request.
:param config: Optional dictionary for arbitrary parameters to the boto API create_application call.
:param aws_conn_id: AWS connection to use
"""
def __init__(
self,
release_label: str,
job_type: str,
client_request_token: str = '',
config: Optional[dict] = None,
wait_for_completion: bool = True,
aws_conn_id: str = 'aws_default',
**kwargs,
):
self.aws_conn_id = aws_conn_id
self.release_label = release_label
self.job_type = job_type
self.wait_for_completion = wait_for_completion
self.kwargs = kwargs
self.config = config or {}
super().__init__(**kwargs)
self.client_request_token = client_request_token or str(uuid4())
@cached_property
[docs] def hook(self) -> EmrServerlessHook:
"""Create and return an EmrServerlessHook."""
return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context'):
response = self.hook.conn.create_application(
clientToken=self.client_request_token,
releaseLabel=self.release_label,
type=self.job_type,
**self.config,
)
application_id = response['applicationId']
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'Application Creation failed: {response}')
self.log.info('EMR serverless application created: %s', application_id)
# This should be replaced with a boto waiter when available.
self.hook.waiter(
get_state_callable=self.hook.conn.get_application,
get_state_args={'applicationId': application_id},
parse_response=['application', 'state'],
desired_state={'CREATED'},
failure_states=EmrServerlessApplicationSensor.FAILURE_STATES,
object_type='application',
action='created',
)
self.log.info('Starting application %s', application_id)
self.hook.conn.start_application(applicationId=application_id)
if self.wait_for_completion:
# This should be replaced with a boto waiter when available.
self.hook.waiter(
get_state_callable=self.hook.conn.get_application,
get_state_args={'applicationId': application_id},
parse_response=['application', 'state'],
desired_state={'STARTED'},
failure_states=EmrServerlessApplicationSensor.FAILURE_STATES,
object_type='application',
action='started',
)
return application_id
[docs]class EmrServerlessStartJobOperator(BaseOperator):
"""
Operator to start EMR Serverless job.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrServerlessStartJobOperator`
:param application_id: ID of the EMR Serverless application to start.
:param execution_role_arn: ARN of role to perform action.
:param job_driver: Driver that the job runs on.
:param configuration_overrides: Configuration specifications to override existing configurations.
:param client_request_token: The client idempotency token of the application to create.
Its value must be unique for each request.
:param config: Optional dictionary for arbitrary parameters to the boto API start_job_run call.
:param wait_for_completion: If true, waits for the job to start before returning. Defaults to True.
:param aws_conn_id: AWS connection to use
"""
[docs] template_fields: Sequence[str] = (
'application_id',
'execution_role_arn',
'job_driver',
'configuration_overrides',
)
def __init__(
self,
application_id: str,
execution_role_arn: str,
job_driver: dict,
configuration_overrides: Optional[dict],
client_request_token: str = '',
config: Optional[dict] = None,
wait_for_completion: bool = True,
aws_conn_id: str = 'aws_default',
**kwargs,
):
self.aws_conn_id = aws_conn_id
self.application_id = application_id
self.execution_role_arn = execution_role_arn
self.job_driver = job_driver
self.configuration_overrides = configuration_overrides
self.wait_for_completion = wait_for_completion
self.config = config or {}
super().__init__(**kwargs)
self.client_request_token = client_request_token or str(uuid4())
@cached_property
[docs] def hook(self) -> EmrServerlessHook:
"""Create and return an EmrServerlessHook."""
return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context') -> Dict:
self.log.info('Starting job on Application: %s', self.application_id)
app_state = self.hook.conn.get_application(applicationId=self.application_id)['application']['state']
if app_state not in EmrServerlessApplicationSensor.SUCCESS_STATES:
self.hook.conn.start_application(applicationId=self.application_id)
self.hook.waiter(
get_state_callable=self.hook.conn.get_application,
get_state_args={'applicationId': self.application_id},
parse_response=['application', 'state'],
desired_state={'STARTED'},
failure_states=EmrServerlessApplicationSensor.FAILURE_STATES,
object_type='application',
action='started',
)
response = self.hook.conn.start_job_run(
clientToken=self.client_request_token,
applicationId=self.application_id,
executionRoleArn=self.execution_role_arn,
jobDriver=self.job_driver,
configurationOverrides=self.configuration_overrides,
**self.config,
)
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'EMR serverless job failed to start: {response}')
self.log.info('EMR serverless job started: %s', response['jobRunId'])
if self.wait_for_completion:
# This should be replaced with a boto waiter when available.
self.hook.waiter(
get_state_callable=self.hook.conn.get_job_run,
get_state_args={
'applicationId': self.application_id,
'jobRunId': response['jobRunId'],
},
parse_response=['jobRun', 'state'],
desired_state=EmrServerlessJobSensor.TERMINAL_STATES,
failure_states=EmrServerlessJobSensor.FAILURE_STATES,
object_type='job',
action='run',
)
return response['jobRunId']
[docs]class EmrServerlessDeleteApplicationOperator(BaseOperator):
"""
Operator to delete EMR Serverless application
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:EmrServerlessDeleteApplicationOperator`
:param application_id: ID of the EMR Serverless application to delete.
:param wait_for_completion: If true, wait for the Application to start before returning. Default to True
:param aws_conn_id: AWS connection to use
"""
[docs] template_fields: Sequence[str] = ('application_id',)
def __init__(
self,
application_id: str,
wait_for_completion: bool = True,
aws_conn_id: str = 'aws_default',
**kwargs,
):
self.aws_conn_id = aws_conn_id
self.application_id = application_id
self.wait_for_completion = wait_for_completion
super().__init__(**kwargs)
@cached_property
[docs] def hook(self) -> EmrServerlessHook:
"""Create and return an EmrServerlessHook."""
return EmrServerlessHook(aws_conn_id=self.aws_conn_id)
[docs] def execute(self, context: 'Context') -> None:
self.log.info('Stopping application: %s', self.application_id)
self.hook.conn.stop_application(applicationId=self.application_id)
# This should be replaced with a boto waiter when available.
self.hook.waiter(
get_state_callable=self.hook.conn.get_application,
get_state_args={
'applicationId': self.application_id,
},
parse_response=['application', 'state'],
desired_state=EmrServerlessApplicationSensor.FAILURE_STATES,
failure_states=set(),
object_type='application',
action='stopped',
)
self.log.info('Deleting application: %s', self.application_id)
response = self.hook.conn.delete_application(applicationId=self.application_id)
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'Application deletion failed: {response}')
if self.wait_for_completion:
# This should be replaced with a boto waiter when available.
self.hook.waiter(
get_state_callable=self.hook.conn.get_application,
get_state_args={'applicationId': self.application_id},
parse_response=['application', 'state'],
desired_state={'TERMINATED'},
failure_states=EmrServerlessApplicationSensor.FAILURE_STATES,
object_type='application',
action='deleted',
)
self.log.info('EMR serverless application deleted')