Amazon SageMaker¶
Amazon SageMaker is a fully managed machine learning service. With Amazon SageMaker, data scientists and developers can quickly build and train machine learning models, and then deploy them into a production-ready hosted environment.
Airflow provides operators to create and interact with SageMaker Jobs.
Prerequisite Tasks¶
To use these operators, you must do a few things:
Create necessary resources using AWS Console or AWS CLI.
Install API libraries via pip.
pip install 'apache-airflow[amazon]'
Detailed information is available Installation
Operators¶
Create an Amazon SageMaker processing job¶
To create an Amazon Sagemaker processing job to sanitize your dataset you can use
SageMakerProcessingOperator
.
preprocess_raw_data = SageMakerProcessingOperator(
task_id='preprocess_raw_data',
config=SAGEMAKER_PROCESSING_JOB_CONFIG,
do_xcom_push=False,
)
Create an Amazon SageMaker training job¶
To create an Amazon Sagemaker training job you can use
SageMakerTrainingOperator
.
train_model = SageMakerTrainingOperator(
task_id='train_model',
config=TRAINING_CONFIG,
# Waits by default, setting as False to demonstrate the Sensor below.
wait_for_completion=False,
do_xcom_push=False,
)
Create an Amazon SageMaker model¶
To create an Amazon Sagemaker model you can use
SageMakerModelOperator
.
create_model = SageMakerModelOperator(
task_id='create_model',
config=MODEL_CONFIG,
do_xcom_push=False,
)
Start a hyperparameter tuning job¶
To start a hyperparameter tuning job for an Amazon Sagemaker model you can use
SageMakerTuningOperator
.
tune_model = SageMakerTuningOperator(
task_id='tune_model',
config=TUNING_CONFIG,
# Waits by default, setting as False to demonstrate the Sensor below.
wait_for_completion=False,
do_xcom_push=False,
)
Delete an Amazon SageMaker model¶
To delete an Amazon Sagemaker model you can use
SageMakerDeleteModelOperator
.
delete_model = SageMakerDeleteModelOperator(
task_id='delete_model',
config={'ModelName': MODEL_NAME},
trigger_rule='all_done',
)
Create an Amazon SageMaker transform job¶
To create an Amazon Sagemaker transform job you can use
SageMakerTransformOperator
.
test_model = SageMakerTransformOperator(
task_id='test_model',
config=TRANSFORM_CONFIG,
# Waits by default, setting as False to demonstrate the Sensor below.
wait_for_completion=False,
do_xcom_push=False,
)
Create an Amazon SageMaker endpoint config job¶
To create an Amazon Sagemaker endpoint config job you can use
SageMakerEndpointConfigOperator
.
configure_endpoint = SageMakerEndpointConfigOperator(
task_id='configure_endpoint',
config=ENDPOINT_CONFIG_CONFIG,
do_xcom_push=False,
)
Create an Amazon SageMaker endpoint job¶
To create an Amazon Sagemaker endpoint you can use
SageMakerEndpointOperator
.
deploy_endpoint = SageMakerEndpointOperator(
task_id='deploy_endpoint',
config=DEPLOY_ENDPOINT_CONFIG,
# Waits by default, <setting as False to demonstrate the Sensor below.
wait_for_completion=False,
do_xcom_push=False,
)
Sensors¶
Wait on an Amazon SageMaker training job state¶
To check the state of an Amazon Sagemaker training job until it reaches a terminal state
you can use SageMakerTrainingSensor
.
await_training = SageMakerTrainingSensor(
task_id='await_training',
job_name=TRAINING_JOB_NAME,
)
Wait on an Amazon SageMaker transform job state¶
To check the state of an Amazon Sagemaker transform job until it reaches a terminal state
you can use SageMakerTransformOperator
.
await_transform = SageMakerTransformSensor(
task_id='await_transform',
job_name=TRANSFORM_JOB_NAME,
)
Wait on an Amazon SageMaker tuning job state¶
To check the state of an Amazon Sagemaker hyperparameter tuning job until it reaches a terminal state
you can use SageMakerTuningSensor
.
await_tune = SageMakerTuningSensor(
task_id='await_tuning',
job_name=TUNING_JOB_NAME,
)
Wait on an Amazon SageMaker endpoint state¶
To check the state of an Amazon Sagemaker endpoint until it reaches a terminal state
you can use SageMakerEndpointSensor
.
await_endpoint = SageMakerEndpointSensor(
task_id='await_endpoint',
endpoint_name=ENDPOINT_NAME,
do_xcom_push=False,
)