Source code for airflow.providers.amazon.aws.transfers.mysql_to_s3

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import os
import warnings
from collections import namedtuple
from enum import Enum
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Optional, Sequence, Union

import numpy as np
import pandas as pd
from typing_extensions import Literal

from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from airflow.providers.mysql.hooks.mysql import MySqlHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]FILE_FORMAT = Enum( "FILE_FORMAT", "CSV, PARQUET",
)
[docs]FileOptions = namedtuple('FileOptions', ['mode', 'suffix'])
[docs]FILE_OPTIONS_MAP = { FILE_FORMAT.CSV: FileOptions('r+', '.csv'), FILE_FORMAT.PARQUET: FileOptions('rb+', '.parquet'),
}
[docs]class MySQLToS3Operator(BaseOperator): """ Saves data from an specific MySQL query into a file in S3. :param query: the sql query to be executed. If you want to execute a file, place the absolute path of it, ending with .sql extension. (templated) :type query: str :param s3_bucket: bucket where the data will be stored. (templated) :type s3_bucket: str :param s3_key: desired key for the file. It includes the name of the file. (templated) :type s3_key: str :param replace: whether or not to replace the file in S3 if it previously existed :type replace: bool :param mysql_conn_id: Reference to :ref:`mysql connection id <howto/connection:mysql>`. :type mysql_conn_id: str :param aws_conn_id: reference to a specific S3 connection :type aws_conn_id: str :param verify: Whether or not to verify SSL certificates for S3 connection. By default SSL certificates are verified. You can provide the following values: - ``False``: do not validate SSL certificates. SSL will still be used (unless use_ssl is False), but SSL certificates will not be verified. - ``path/to/cert/bundle.pem``: A filename of the CA cert bundle to uses. You can specify this argument if you want to use a different CA cert bundle than the one used by botocore. :type verify: bool or str :param pd_csv_kwargs: arguments to include in pd.to_csv (header, index, columns...) :type pd_csv_kwargs: dict :param index: whether to have the index or not in the dataframe :type index: str :param header: whether to include header or not into the S3 file :type header: bool :param file_format: the destination file format, only string 'csv' or 'parquet' is accepted. :type file_format: str :param pd_kwargs: arguments to include in ``DataFrame.to_parquet()`` or ``DataFrame.to_csv()``. This is preferred than ``pd_csv_kwargs``. :type pd_kwargs: dict """
[docs] template_fields: Sequence[str] = ( 's3_bucket', 's3_key', 'query',
)
[docs] template_ext: Sequence[str] = ('.sql',)
[docs] template_fields_renderers = { "query": "sql", "pd_csv_kwargs": "json", "pd_kwargs": "json",
} def __init__( self, *, query: str, s3_bucket: str, s3_key: str, replace: bool = False, mysql_conn_id: str = 'mysql_default', aws_conn_id: str = 'aws_default', verify: Optional[Union[bool, str]] = None, pd_csv_kwargs: Optional[dict] = None, index: bool = False, header: bool = False, file_format: Literal['csv', 'parquet'] = 'csv', pd_kwargs: Optional[dict] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.query = query self.s3_bucket = s3_bucket self.s3_key = s3_key self.mysql_conn_id = mysql_conn_id self.aws_conn_id = aws_conn_id self.verify = verify self.replace = replace if file_format == "csv": self.file_format = FILE_FORMAT.CSV else: self.file_format = FILE_FORMAT.PARQUET if pd_csv_kwargs: warnings.warn( "pd_csv_kwargs is deprecated. Please use pd_kwargs.", DeprecationWarning, stacklevel=2, ) if index or header: warnings.warn( "index and header are deprecated. Please pass them via pd_kwargs.", DeprecationWarning, stacklevel=2, ) self.pd_kwargs = pd_kwargs or pd_csv_kwargs or {} if self.file_format == FILE_FORMAT.CSV: if "path_or_buf" in self.pd_kwargs: raise AirflowException('The argument path_or_buf is not allowed, please remove it') if "index" not in self.pd_kwargs: self.pd_kwargs["index"] = index if "header" not in self.pd_kwargs: self.pd_kwargs["header"] = header else: if pd_csv_kwargs is not None: raise TypeError("pd_csv_kwargs may not be specified when file_format='parquet'") @staticmethod def _fix_int_dtypes(df: pd.DataFrame) -> None: """Mutate DataFrame to set dtypes for int columns containing NaN values.""" for col in df: if "float" in df[col].dtype.name and df[col].hasnans: # inspect values to determine if dtype of non-null values is int or float notna_series = df[col].dropna().values if np.isclose(notna_series, notna_series.astype(int)).all(): # set to dtype that retains integers and supports NaNs df[col] = np.where(df[col].isnull(), None, df[col]) df[col] = df[col].astype(pd.Int64Dtype())
[docs] def execute(self, context: 'Context') -> None: mysql_hook = MySqlHook(mysql_conn_id=self.mysql_conn_id) s3_conn = S3Hook(aws_conn_id=self.aws_conn_id, verify=self.verify) data_df = mysql_hook.get_pandas_df(self.query) self.log.info("Data from MySQL obtained") self._fix_int_dtypes(data_df) file_options = FILE_OPTIONS_MAP[self.file_format] with NamedTemporaryFile(mode=file_options.mode, suffix=file_options.suffix) as tmp_file: if self.file_format == FILE_FORMAT.CSV: data_df.to_csv(tmp_file.name, **self.pd_kwargs) else: data_df.to_parquet(tmp_file.name, **self.pd_kwargs) s3_conn.load_file( filename=tmp_file.name, key=self.s3_key, bucket_name=self.s3_bucket, replace=self.replace ) if s3_conn.check_for_key(self.s3_key, bucket_name=self.s3_bucket): file_location = os.path.join(self.s3_bucket, self.s3_key) self.log.info("File saved correctly in %s", file_location)

Was this entry helpful?