Source code for airflow.providers.amazon.aws.operators.glue

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import os.path
import warnings
from typing import TYPE_CHECKING, Optional, Sequence

from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.glue import GlueJobHook
from airflow.providers.amazon.aws.hooks.s3 import S3Hook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class GlueJobOperator(BaseOperator): """ Creates an AWS Glue Job. AWS Glue is a serverless Spark ETL service for running Spark Jobs on the AWS cloud. Language support: Python and Scala :param job_name: unique job name per AWS Account :type job_name: Optional[str] :param script_location: location of ETL script. Must be a local or S3 path :type script_location: Optional[str] :param job_desc: job description details :type job_desc: Optional[str] :param concurrent_run_limit: The maximum number of concurrent runs allowed for a job :type concurrent_run_limit: Optional[int] :param script_args: etl script arguments and AWS Glue arguments (templated) :type script_args: dict :param retry_limit: The maximum number of times to retry this job if it fails :type retry_limit: Optional[int] :param num_of_dpus: Number of AWS Glue DPUs to allocate to this Job. :type num_of_dpus: int :param region_name: aws region name (example: us-east-1) :type region_name: str :param s3_bucket: S3 bucket where logs and local etl script will be uploaded :type s3_bucket: Optional[str] :param iam_role_name: AWS IAM Role for Glue Job Execution :type iam_role_name: Optional[str] :param create_job_kwargs: Extra arguments for Glue Job Creation :type create_job_kwargs: Optional[dict] :param run_job_kwargs: Extra arguments for Glue Job Run :type run_job_kwargs: Optional[dict] :param wait_for_completion: Whether or not wait for job run completion. (default: True) :type wait_for_completion: bool """
[docs] template_fields: Sequence[str] = ('script_args',)
[docs] template_ext: Sequence[str] = ()
[docs] template_fields_renderers = { "script_args": "json", "create_job_kwargs": "json",
}
[docs] ui_color = '#ededed'
def __init__( self, *, job_name: str = 'aws_glue_default_job', job_desc: str = 'AWS Glue Job with Airflow', script_location: Optional[str] = None, concurrent_run_limit: Optional[int] = None, script_args: Optional[dict] = None, retry_limit: Optional[int] = None, num_of_dpus: int = 6, aws_conn_id: str = 'aws_default', region_name: Optional[str] = None, s3_bucket: Optional[str] = None, iam_role_name: Optional[str] = None, create_job_kwargs: Optional[dict] = None, run_job_kwargs: Optional[dict] = None, wait_for_completion: bool = True, **kwargs, ): super().__init__(**kwargs) self.job_name = job_name self.job_desc = job_desc self.script_location = script_location self.concurrent_run_limit = concurrent_run_limit or 1 self.script_args = script_args or {} self.retry_limit = retry_limit self.num_of_dpus = num_of_dpus self.aws_conn_id = aws_conn_id self.region_name = region_name self.s3_bucket = s3_bucket self.iam_role_name = iam_role_name self.s3_protocol = "s3://" self.s3_artifacts_prefix = 'artifacts/glue-scripts/' self.create_job_kwargs = create_job_kwargs self.run_job_kwargs = run_job_kwargs or {} self.wait_for_completion = wait_for_completion
[docs] def execute(self, context: 'Context'): """ Executes AWS Glue Job from Airflow :return: the id of the current glue job. """ if self.script_location and not self.script_location.startswith(self.s3_protocol): s3_hook = S3Hook(aws_conn_id=self.aws_conn_id) script_name = os.path.basename(self.script_location) s3_hook.load_file( self.script_location, self.s3_artifacts_prefix + script_name, bucket_name=self.s3_bucket ) s3_script_location = f"s3://{self.s3_bucket}/{self.s3_artifacts_prefix}{script_name}" else: s3_script_location = self.script_location glue_job = GlueJobHook( job_name=self.job_name, desc=self.job_desc, concurrent_run_limit=self.concurrent_run_limit, script_location=s3_script_location, retry_limit=self.retry_limit, num_of_dpus=self.num_of_dpus, aws_conn_id=self.aws_conn_id, region_name=self.region_name, s3_bucket=self.s3_bucket, iam_role_name=self.iam_role_name, create_job_kwargs=self.create_job_kwargs, ) self.log.info( "Initializing AWS Glue Job: %s. Wait for completion: %s", self.job_name, self.wait_for_completion, ) glue_job_run = glue_job.initialize_job(self.script_args, self.run_job_kwargs) if self.wait_for_completion: glue_job_run = glue_job.job_completion(self.job_name, glue_job_run['JobRunId']) self.log.info( "AWS Glue Job: %s status: %s. Run Id: %s", self.job_name, glue_job_run['JobRunState'], glue_job_run['JobRunId'], ) else: self.log.info("AWS Glue Job: %s. Run Id: %s", self.job_name, glue_job_run['JobRunId']) return glue_job_run['JobRunId']
[docs]class AwsGlueJobOperator(GlueJobOperator): """ This operator is deprecated. Please use :class:`airflow.providers.amazon.aws.operators.glue.GlueJobOperator`. """ def __init__(self, *args, **kwargs): warnings.warn( "This operator is deprecated. " "Please use :class:`airflow.providers.amazon.aws.operators.glue.GlueJobOperator`.", DeprecationWarning, stacklevel=2, ) super().__init__(*args, **kwargs)

Was this entry helpful?