#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import ast
import sys
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from uuid import uuid4
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator, BaseOperatorLink, TaskInstance
from airflow.providers.amazon.aws.hooks.emr import EmrHook
if TYPE_CHECKING:
from airflow.utils.context import Context
if sys.version_info >= (3, 8):
from functools import cached_property
else:
from cached_property import cached_property
from airflow.providers.amazon.aws.hooks.emr import EmrContainerHook
[docs]class EmrAddStepsOperator(BaseOperator):
"""
An operator that adds steps to an existing EMR job_flow.
:param job_flow_id: id of the JobFlow to add steps to. (templated)
:type job_flow_id: Optional[str]
:param job_flow_name: name of the JobFlow to add steps to. Use as an alternative to passing
job_flow_id. will search for id of JobFlow with matching name in one of the states in
param cluster_states. Exactly one cluster like this should exist or will fail. (templated)
:type job_flow_name: Optional[str]
:param cluster_states: Acceptable cluster states when searching for JobFlow id by job_flow_name.
(templated)
:type cluster_states: list
:param aws_conn_id: aws connection to uses
:type aws_conn_id: str
:param steps: boto3 style steps or reference to a steps file (must be '.json') to
be added to the jobflow. (templated)
:type steps: list|str
:param do_xcom_push: if True, job_flow_id is pushed to XCom with key job_flow_id.
:type do_xcom_push: bool
"""
[docs] template_fields: Sequence[str] = ('job_flow_id', 'job_flow_name', 'cluster_states', 'steps')
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"steps": "json"}
def __init__(
self,
*,
job_flow_id: Optional[str] = None,
job_flow_name: Optional[str] = None,
cluster_states: Optional[List[str]] = None,
aws_conn_id: str = 'aws_default',
steps: Optional[Union[List[dict], str]] = None,
**kwargs,
):
if kwargs.get('xcom_push') is not None:
raise AirflowException("'xcom_push' was deprecated, use 'do_xcom_push' instead")
if not (job_flow_id is None) ^ (job_flow_name is None):
raise AirflowException('Exactly one of job_flow_id or job_flow_name must be specified.')
super().__init__(**kwargs)
cluster_states = cluster_states or []
steps = steps or []
self.aws_conn_id = aws_conn_id
self.job_flow_id = job_flow_id
self.job_flow_name = job_flow_name
self.cluster_states = cluster_states
self.steps = steps
[docs] def execute(self, context: 'Context') -> List[str]:
emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
emr = emr_hook.get_conn()
job_flow_id = self.job_flow_id or emr_hook.get_cluster_id_by_name(
str(self.job_flow_name), self.cluster_states
)
if not job_flow_id:
raise AirflowException(f'No cluster found for name: {self.job_flow_name}')
if self.do_xcom_push:
context['ti'].xcom_push(key='job_flow_id', value=job_flow_id)
self.log.info('Adding steps to %s', job_flow_id)
# steps may arrive as a string representing a list
# e.g. if we used XCom or a file then: steps="[{ step1 }, { step2 }]"
steps = self.steps
if isinstance(steps, str):
steps = ast.literal_eval(steps)
response = emr.add_job_flow_steps(JobFlowId=job_flow_id, Steps=steps)
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'Adding steps failed: {response}')
else:
self.log.info('Steps %s added to JobFlow', response['StepIds'])
return response['StepIds']
[docs]class EmrContainerOperator(BaseOperator):
"""
An operator that submits jobs to EMR on EKS virtual clusters.
:param name: The name of the job run.
:type name: str
:param virtual_cluster_id: The EMR on EKS virtual cluster ID
:type virtual_cluster_id: str
:param execution_role_arn: The IAM role ARN associated with the job run.
:type execution_role_arn: str
:param release_label: The Amazon EMR release version to use for the job run.
:type release_label: str
:param job_driver: Job configuration details, e.g. the Spark job parameters.
:type job_driver: dict
:param configuration_overrides: The configuration overrides for the job run,
specifically either application configuration or monitoring configuration.
:type configuration_overrides: dict
:param client_request_token: The client idempotency token of the job run request.
Use this if you want to specify a unique ID to prevent two jobs from getting started.
If no token is provided, a UUIDv4 token will be generated for you.
:type client_request_token: str
:param aws_conn_id: The Airflow connection used for AWS credentials.
:type aws_conn_id: str
:param poll_interval: Time (in seconds) to wait between two consecutive calls to check query status on EMR
:type poll_interval: int
:param max_tries: Maximum number of times to wait for the job run to finish.
Defaults to None, which will poll until the job is *not* in a pending, submitted, or running state.
:type max_tries: int
"""
[docs] template_fields: Sequence[str] = (
"name",
"virtual_cluster_id",
"execution_role_arn",
"release_label",
"job_driver",
)
def __init__(
self,
*,
name: str,
virtual_cluster_id: str,
execution_role_arn: str,
release_label: str,
job_driver: dict,
configuration_overrides: Optional[dict] = None,
client_request_token: Optional[str] = None,
aws_conn_id: str = "aws_default",
poll_interval: int = 30,
max_tries: Optional[int] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.name = name
self.virtual_cluster_id = virtual_cluster_id
self.execution_role_arn = execution_role_arn
self.release_label = release_label
self.job_driver = job_driver
self.configuration_overrides = configuration_overrides or {}
self.aws_conn_id = aws_conn_id
self.client_request_token = client_request_token or str(uuid4())
self.poll_interval = poll_interval
self.max_tries = max_tries
self.job_id = None
@cached_property
[docs] def hook(self) -> EmrContainerHook:
"""Create and return an EmrContainerHook."""
return EmrContainerHook(
self.aws_conn_id,
virtual_cluster_id=self.virtual_cluster_id,
)
[docs] def execute(self, context: 'Context') -> Optional[str]:
"""Run job on EMR Containers"""
self.job_id = self.hook.submit_job(
self.name,
self.execution_role_arn,
self.release_label,
self.job_driver,
self.configuration_overrides,
self.client_request_token,
)
query_status = self.hook.poll_query_status(self.job_id, self.max_tries, self.poll_interval)
if query_status in EmrContainerHook.FAILURE_STATES:
error_message = self.hook.get_job_failure_reason(self.job_id)
raise AirflowException(
f"EMR Containers job failed. Final state is {query_status}. "
f"query_execution_id is {self.job_id}. Error: {error_message}"
)
elif not query_status or query_status in EmrContainerHook.INTERMEDIATE_STATES:
raise AirflowException(
f"Final state of EMR Containers job is {query_status}. "
f"Max tries of poll status exceeded, query_execution_id is {self.job_id}."
)
return self.job_id
[docs] def on_kill(self) -> None:
"""Cancel the submitted job run"""
if self.job_id:
self.log.info("Stopping job run with jobId - %s", self.job_id)
response = self.hook.stop_query(self.job_id)
http_status_code = None
try:
http_status_code = response["ResponseMetadata"]["HTTPStatusCode"]
except Exception as ex:
self.log.error("Exception while cancelling query: %s", ex)
finally:
if http_status_code is None or http_status_code != 200:
self.log.error("Unable to request query cancel on EMR. Exiting")
else:
self.log.info(
"Polling EMR for query with id %s to reach final state",
self.job_id,
)
self.hook.poll_query_status(self.job_id)
[docs]class EmrClusterLink(BaseOperatorLink):
"""Operator link for EmrCreateJobFlowOperator. It allows users to access the EMR Cluster"""
[docs] def get_link(self, operator: BaseOperator, dttm: datetime) -> str:
"""
Get link to EMR cluster.
:param operator: operator
:param dttm: datetime
:return: url link
"""
ti = TaskInstance(task=operator, execution_date=dttm)
flow_id = ti.xcom_pull(task_ids=operator.task_id)
return (
f'https://console.aws.amazon.com/elasticmapreduce/home#cluster-details:{flow_id}'
if flow_id
else ''
)
[docs]class EmrCreateJobFlowOperator(BaseOperator):
"""
Creates an EMR JobFlow, reading the config from the EMR connection.
A dictionary of JobFlow overrides can be passed that override
the config from the connection.
:param aws_conn_id: aws connection to uses
:type aws_conn_id: str
:param emr_conn_id: emr connection to use
:type emr_conn_id: str
:param job_flow_overrides: boto3 style arguments or reference to an arguments file
(must be '.json') to override emr_connection extra. (templated)
:type job_flow_overrides: dict|str
:param region_name: Region named passed to EmrHook
:type region_name: Optional[str]
"""
[docs] template_fields: Sequence[str] = ('job_flow_overrides',)
[docs] template_ext: Sequence[str] = ('.json',)
[docs] template_fields_renderers = {"job_flow_overrides": "json"}
def __init__(
self,
*,
aws_conn_id: str = 'aws_default',
emr_conn_id: str = 'emr_default',
job_flow_overrides: Optional[Union[str, Dict[str, Any]]] = None,
region_name: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.aws_conn_id = aws_conn_id
self.emr_conn_id = emr_conn_id
if job_flow_overrides is None:
job_flow_overrides = {}
self.job_flow_overrides = job_flow_overrides
self.region_name = region_name
[docs] def execute(self, context: 'Context') -> str:
emr = EmrHook(
aws_conn_id=self.aws_conn_id, emr_conn_id=self.emr_conn_id, region_name=self.region_name
)
self.log.info(
'Creating JobFlow using aws-conn-id: %s, emr-conn-id: %s', self.aws_conn_id, self.emr_conn_id
)
if isinstance(self.job_flow_overrides, str):
job_flow_overrides: Dict[str, Any] = ast.literal_eval(self.job_flow_overrides)
self.job_flow_overrides = job_flow_overrides
else:
job_flow_overrides = self.job_flow_overrides
response = emr.create_job_flow(job_flow_overrides)
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'JobFlow creation failed: {response}')
else:
self.log.info('JobFlow with id %s created', response['JobFlowId'])
return response['JobFlowId']
[docs]class EmrModifyClusterOperator(BaseOperator):
"""
An operator that modifies an existing EMR cluster.
:param cluster_id: cluster identifier
:type cluster_id: str
:param step_concurrency_level: Concurrency of the cluster
:type step_concurrency_level: int
:param aws_conn_id: aws connection to uses
:type aws_conn_id: str
:param do_xcom_push: if True, cluster_id is pushed to XCom with key cluster_id.
:type do_xcom_push: bool
"""
[docs] template_fields: Sequence[str] = ('cluster_id', 'step_concurrency_level')
[docs] template_ext: Sequence[str] = ()
def __init__(
self, *, cluster_id: str, step_concurrency_level: int, aws_conn_id: str = 'aws_default', **kwargs
):
if kwargs.get('xcom_push') is not None:
raise AirflowException("'xcom_push' was deprecated, use 'do_xcom_push' instead")
super().__init__(**kwargs)
self.aws_conn_id = aws_conn_id
self.cluster_id = cluster_id
self.step_concurrency_level = step_concurrency_level
[docs] def execute(self, context: 'Context') -> int:
emr_hook = EmrHook(aws_conn_id=self.aws_conn_id)
emr = emr_hook.get_conn()
if self.do_xcom_push:
context['ti'].xcom_push(key='cluster_id', value=self.cluster_id)
self.log.info('Modifying cluster %s', self.cluster_id)
response = emr.modify_cluster(
ClusterId=self.cluster_id, StepConcurrencyLevel=self.step_concurrency_level
)
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'Modify cluster failed: {response}')
else:
self.log.info('Steps concurrency level %d', response['StepConcurrencyLevel'])
return response['StepConcurrencyLevel']
[docs]class EmrTerminateJobFlowOperator(BaseOperator):
"""
Operator to terminate EMR JobFlows.
:param job_flow_id: id of the JobFlow to terminate. (templated)
:type job_flow_id: str
:param aws_conn_id: aws connection to uses
:type aws_conn_id: str
"""
[docs] template_fields: Sequence[str] = ('job_flow_id',)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_flow_id: str, aws_conn_id: str = 'aws_default', **kwargs):
super().__init__(**kwargs)
self.job_flow_id = job_flow_id
self.aws_conn_id = aws_conn_id
[docs] def execute(self, context: 'Context') -> None:
emr = EmrHook(aws_conn_id=self.aws_conn_id).get_conn()
self.log.info('Terminating JobFlow %s', self.job_flow_id)
response = emr.terminate_job_flows(JobFlowIds=[self.job_flow_id])
if not response['ResponseMetadata']['HTTPStatusCode'] == 200:
raise AirflowException(f'JobFlow termination failed: {response}')
else:
self.log.info('JobFlow with id %s terminated', self.job_flow_id)