Source code for airflow.providers.amazon.aws.operators.batch

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#

"""
An Airflow operator for AWS Batch services

.. seealso::

    - http://boto3.readthedocs.io/en/latest/guide/configuration.html
    - http://boto3.readthedocs.io/en/latest/reference/services/batch.html
    - https://docs.aws.amazon.com/batch/latest/APIReference/Welcome.html
"""
from typing import TYPE_CHECKING, Any, Optional, Sequence

from airflow.exceptions import AirflowException
from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.batch_client import AwsBatchClientHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class AwsBatchOperator(BaseOperator): """ Execute a job on AWS Batch :param job_name: the name for the job that will run on AWS Batch (templated) :type job_name: str :param job_definition: the job definition name on AWS Batch :type job_definition: str :param job_queue: the queue name on AWS Batch :type job_queue: str :param overrides: the `containerOverrides` parameter for boto3 (templated) :type overrides: Optional[dict] :param array_properties: the `arrayProperties` parameter for boto3 :type array_properties: Optional[dict] :param parameters: the `parameters` for boto3 (templated) :type parameters: Optional[dict] :param job_id: the job ID, usually unknown (None) until the submit_job operation gets the jobId defined by AWS Batch :type job_id: Optional[str] :param waiters: an :py:class:`.AwsBatchWaiters` object (see note below); if None, polling is used with max_retries and status_retries. :type waiters: Optional[AwsBatchWaiters] :param max_retries: exponential back-off retries, 4200 = 48 hours; polling is only used when waiters is None :type max_retries: int :param status_retries: number of HTTP retries to get job status, 10; polling is only used when waiters is None :type status_retries: int :param aws_conn_id: connection id of AWS credentials / region name. If None, credential boto3 strategy will be used. :type aws_conn_id: str :param region_name: region name to use in AWS Hook. Override the region_name in connection (if provided) :type region_name: str :param tags: collection of tags to apply to the AWS Batch job submission if None, no tags are submitted :type tags: dict .. note:: Any custom waiters must return a waiter for these calls: .. code-block:: python waiter = waiters.get_waiter("JobExists") waiter = waiters.get_waiter("JobRunning") waiter = waiters.get_waiter("JobComplete") """
[docs] ui_color = "#c3dae0"
[docs] arn = None # type: Optional[str]
[docs] template_fields: Sequence[str] = ( "job_name", "overrides", "parameters",
)
[docs] template_fields_renderers = {"overrides": "json", "parameters": "json"}
def __init__( self, *, job_name: str, job_definition: str, job_queue: str, overrides: dict, array_properties: Optional[dict] = None, parameters: Optional[dict] = None, job_id: Optional[str] = None, waiters: Optional[Any] = None, max_retries: Optional[int] = None, status_retries: Optional[int] = None, aws_conn_id: Optional[str] = None, region_name: Optional[str] = None, tags: Optional[dict] = None, **kwargs, ): BaseOperator.__init__(self, **kwargs) self.job_id = job_id self.job_name = job_name self.job_definition = job_definition self.job_queue = job_queue self.overrides = overrides or {} self.array_properties = array_properties or {} self.parameters = parameters or {} self.waiters = waiters self.tags = tags or {} self.hook = AwsBatchClientHook( max_retries=max_retries, status_retries=status_retries, aws_conn_id=aws_conn_id, region_name=region_name, )
[docs] def execute(self, context: 'Context'): """ Submit and monitor an AWS Batch job :raises: AirflowException """ self.submit_job(context) self.monitor_job(context)
[docs] def on_kill(self): response = self.hook.client.terminate_job(jobId=self.job_id, reason="Task killed by the user") self.log.info("AWS Batch job (%s) terminated: %s", self.job_id, response)
[docs] def submit_job(self, context: 'Context'): """ Submit an AWS Batch job :raises: AirflowException """ self.log.info( "Running AWS Batch job - job definition: %s - on queue %s", self.job_definition, self.job_queue, ) self.log.info("AWS Batch job - container overrides: %s", self.overrides) try: response = self.hook.client.submit_job( jobName=self.job_name, jobQueue=self.job_queue, jobDefinition=self.job_definition, arrayProperties=self.array_properties, parameters=self.parameters, containerOverrides=self.overrides, tags=self.tags, ) self.job_id = response["jobId"] self.log.info("AWS Batch job (%s) started: %s", self.job_id, response) except Exception as e: self.log.error("AWS Batch job (%s) failed submission", self.job_id) raise AirflowException(e)
[docs] def monitor_job(self, context: 'Context'): """ Monitor an AWS Batch job monitor_job can raise an exception or an AirflowTaskTimeout can be raised if execution_timeout is given while creating the task. These exceptions should be handled in taskinstance.py instead of here like it was previously done :raises: AirflowException """ if not self.job_id: raise AirflowException('AWS Batch job - job_id was not found') if self.waiters: self.waiters.wait_for_job(self.job_id) else: self.hook.wait_for_job(self.job_id) self.hook.check_job_success(self.job_id) self.log.info("AWS Batch job (%s) succeeded", self.job_id)

Was this entry helpful?