Source code for airflow.providers.amazon.aws.operators.sagemaker_training
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.fromtypingimportOptionalfromairflow.exceptionsimportAirflowExceptionfromairflow.providers.amazon.aws.hooks.base_awsimportAwsBaseHookfromairflow.providers.amazon.aws.operators.sagemaker_baseimportSageMakerBaseOperator
[docs]classSageMakerTrainingOperator(SageMakerBaseOperator):""" Initiate a SageMaker training job. This operator returns The ARN of the training job created in Amazon SageMaker. :param config: The configuration necessary to start a training job (templated). For details of the configuration parameter see :py:meth:`SageMaker.Client.create_training_job` :type config: dict :param aws_conn_id: The AWS connection ID to use. :type aws_conn_id: str :param wait_for_completion: If wait is set to True, the time interval, in seconds, that the operation waits to check the status of the training job. :type wait_for_completion: bool :param print_log: if the operator should print the cloudwatch log during training :type print_log: bool :param check_interval: if wait is set to be true, this is the time interval in seconds which the operator will check the status of the training job :type check_interval: int :param max_ingestion_time: If wait is set to True, the operation fails if the training job doesn't finish within max_ingestion_time seconds. If you set this parameter to None, the operation does not timeout. :type max_ingestion_time: int :param check_if_job_exists: If set to true, then the operator will check whether a training job already exists for the name in the config. :type check_if_job_exists: bool :param action_if_job_exists: Behaviour if the job name already exists. Possible options are "increment" (default) and "fail". This is only relevant if check_if_job_exists is True. :type action_if_job_exists: str """
]def__init__(self,*,config:dict,wait_for_completion:bool=True,print_log:bool=True,check_interval:int=30,max_ingestion_time:Optional[int]=None,check_if_job_exists:bool=True,action_if_job_exists:str="increment",# TODO use typing.Literal for this in Python 3.8**kwargs,):super().__init__(config=config,**kwargs)self.wait_for_completion=wait_for_completionself.print_log=print_logself.check_interval=check_intervalself.max_ingestion_time=max_ingestion_timeself.check_if_job_exists=check_if_job_existsifaction_if_job_existsin("increment","fail"):self.action_if_job_exists=action_if_job_existselse:raiseAirflowException("Argument action_if_job_exists accepts only 'increment' and 'fail'. "f"Provided value: '{action_if_job_exists}'.")
[docs]defexecute(self,context)->dict:self.preprocess_config()ifself.check_if_job_exists:self._check_if_job_exists()self.log.info("Creating SageMaker training job %s.",self.config["TrainingJobName"])response=self.hook.create_training_job(self.config,wait_for_completion=self.wait_for_completion,print_log=self.print_log,check_interval=self.check_interval,max_ingestion_time=self.max_ingestion_time,)ifresponse['ResponseMetadata']['HTTPStatusCode']!=200:raiseAirflowException(f'Sagemaker Training Job creation failed: {response}')else:return{'Training':self.hook.describe_training_job(self.config['TrainingJobName'])}
def_check_if_job_exists(self)->None:training_job_name=self.config["TrainingJobName"]training_jobs=self.hook.list_training_jobs(name_contains=training_job_name)# Check if given TrainingJobName already existsiftraining_job_namein[tj["TrainingJobName"]fortjintraining_jobs]:ifself.action_if_job_exists=="increment":self.log.info("Found existing training job with name '%s'.",training_job_name)new_training_job_name=f"{training_job_name}-{len(training_jobs)+1}"self.config["TrainingJobName"]=new_training_job_nameself.log.info("Incremented training job name to '%s'.",new_training_job_name)elifself.action_if_job_exists=="fail":raiseAirflowException(f"A SageMaker training job with name {training_job_name} already exists."