Source code for airflow.providers.amazon.aws.operators.sagemaker_endpoint

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional

from botocore.exceptions import ClientError

from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook
from airflow.providers.amazon.aws.operators.sagemaker_base import SageMakerBaseOperator


[docs]class SageMakerEndpointOperator(SageMakerBaseOperator): """ Create a SageMaker endpoint. This operator returns The ARN of the endpoint created in Amazon SageMaker :param config: The configuration necessary to create an endpoint. If you need to create a SageMaker endpoint based on an existed SageMaker model and an existed SageMaker endpoint config:: config = endpoint_configuration; If you need to create all of SageMaker model, SageMaker endpoint-config and SageMaker endpoint:: config = { 'Model': model_configuration, 'EndpointConfig': endpoint_config_configuration, 'Endpoint': endpoint_configuration } For details of the configuration parameter of model_configuration see :py:meth:`SageMaker.Client.create_model` For details of the configuration parameter of endpoint_config_configuration see :py:meth:`SageMaker.Client.create_endpoint_config` For details of the configuration parameter of endpoint_configuration see :py:meth:`SageMaker.Client.create_endpoint` :type config: dict :param aws_conn_id: The AWS connection ID to use. :type aws_conn_id: str :param wait_for_completion: Whether the operator should wait until the endpoint creation finishes. :type wait_for_completion: bool :param check_interval: If wait is set to True, this is the time interval, in seconds, that this operation waits before polling the status of the endpoint creation. :type check_interval: int :param max_ingestion_time: If wait is set to True, this operation fails if the endpoint creation doesn't finish within max_ingestion_time seconds. If you set this parameter to None it never times out. :type max_ingestion_time: int :param operation: Whether to create an endpoint or update an endpoint. Must be either 'create or 'update'. :type operation: str """ def __init__( self, *, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None, operation: str = 'create', **kwargs, ): super().__init__(config=config, **kwargs) self.config = config self.wait_for_completion = wait_for_completion self.check_interval = check_interval self.max_ingestion_time = max_ingestion_time self.operation = operation.lower() if self.operation not in ['create', 'update']: raise ValueError('Invalid value! Argument operation has to be one of "create" and "update"') self.create_integer_fields()
[docs] def create_integer_fields(self) -> None: """Set fields which should be casted to integers.""" if 'EndpointConfig' in self.config: self.integer_fields = [['EndpointConfig', 'ProductionVariants', 'InitialInstanceCount']]
[docs] def expand_role(self) -> None: if 'Model' not in self.config: return hook = AwsBaseHook(self.aws_conn_id, client_type='iam') config = self.config['Model'] if 'ExecutionRoleArn' in config: config['ExecutionRoleArn'] = hook.expand_role(config['ExecutionRoleArn'])
[docs] def execute(self, context) -> dict: self.preprocess_config() model_info = self.config.get('Model') endpoint_config_info = self.config.get('EndpointConfig') endpoint_info = self.config.get('Endpoint', self.config) if model_info: self.log.info('Creating SageMaker model %s.', model_info['ModelName']) self.hook.create_model(model_info) if endpoint_config_info: self.log.info('Creating endpoint config %s.', endpoint_config_info['EndpointConfigName']) self.hook.create_endpoint_config(endpoint_config_info) if self.operation == 'create': sagemaker_operation = self.hook.create_endpoint log_str = 'Creating' elif self.operation == 'update': sagemaker_operation = self.hook.update_endpoint log_str = 'Updating' else: raise ValueError('Invalid value! Argument operation has to be one of "create" and "update"') self.log.info('%s SageMaker endpoint %s.', log_str, endpoint_info['EndpointName']) try: response = sagemaker_operation( endpoint_info, wait_for_completion=self.wait_for_completion, check_interval=self.check_interval, max_ingestion_time=self.max_ingestion_time, ) except ClientError: # Botocore throws a ClientError if the endpoint is already created self.operation = 'update' sagemaker_operation = self.hook.update_endpoint log_str = 'Updating' response = sagemaker_operation( endpoint_info, wait_for_completion=self.wait_for_completion, check_interval=self.check_interval, max_ingestion_time=self.max_ingestion_time, ) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'Sagemaker endpoint creation failed: {response}') else: return { 'EndpointConfig': self.hook.describe_endpoint_config(endpoint_info['EndpointConfigName']), 'Endpoint': self.hook.describe_endpoint(endpoint_info['EndpointName']),
}

Was this entry helpful?