airflow.providers.amazon.aws.hooks.sagemaker
¶
Module Contents¶
-
class
airflow.providers.amazon.aws.hooks.sagemaker.
LogState
[source]¶ Enum-style class holding all possible states of CloudWatch log streams. https://sagemaker.readthedocs.io/en/stable/session.html#sagemaker.session.LogState
-
airflow.providers.amazon.aws.hooks.sagemaker.
argmin
(arr, f: Callable) → Optional[int][source]¶ -
Return the index, i, in arr that minimizes f(arr[i])
-
airflow.providers.amazon.aws.hooks.sagemaker.
secondary_training_status_changed
(current_job_description: dict, prev_job_description: dict) → bool[source]¶ -
Returns true if training job's secondary status message has changed.
-
airflow.providers.amazon.aws.hooks.sagemaker.
secondary_training_status_message
(job_description: Dict[str, List[dict]], prev_description: Optional[dict]) → str[source]¶ -
Returns a string contains start time and the secondary training job status message.
-
class
airflow.providers.amazon.aws.hooks.sagemaker.
SageMakerHook
(*args, **kwargs)[source]¶ Bases:
airflow.providers.amazon.aws.hooks.base_aws.AwsBaseHook
Interact with Amazon SageMaker.
Additional arguments (such as
aws_conn_id
) may be specified and are passed down to the underlying AwsBaseHook.See also
-
tar_and_s3_upload
(self, path: str, key: str, bucket: str)[source]¶ Tar the local file or directory and upload to s3
-
configure_s3_resources
(self, config: dict)[source]¶ Extract the S3 operations from the configuration and execute them.
-
check_training_config
(self, training_config: dict)[source]¶ Check if a training configuration is valid
- Parameters
training_config (dict) -- training_config
- Returns
None
-
check_tuning_config
(self, tuning_config: dict)[source]¶ Check if a tuning configuration is valid
- Parameters
tuning_config (dict) -- tuning_config
- Returns
None
-
get_log_conn
(self)[source]¶ This method is deprecated. Please use
airflow.providers.amazon.aws.hooks.logs.AwsLogsHook.get_conn()
instead.
-
log_stream
(self, log_group, stream_name, start_time=0, skip=0)[source]¶ This method is deprecated. Please use
airflow.providers.amazon.aws.hooks.logs.AwsLogsHook.get_log_events()
instead.
-
multi_stream_iter
(self, log_group: str, streams: list, positions=None)[source]¶ Iterate over the available events coming from a set of log streams in a single log group interleaving the events from each stream so they're yielded in timestamp order.
- Parameters
- Returns
A tuple of (stream number, cloudwatch log event).
-
create_training_job
(self, config: dict, wait_for_completion: bool = True, print_log: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Create a training job
- Parameters
config (dict) -- the config for training
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to training job creation
-
create_tuning_job
(self, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Create a tuning job
- Parameters
config (dict) -- the config for tuning
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to tuning job creation
-
create_transform_job
(self, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Create a transform job
- Parameters
config (dict) -- the config for transform job
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to transform job creation
-
create_processing_job
(self, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Create a processing job
- Parameters
config (dict) -- the config for processing job
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to transform job creation
-
create_model
(self, config: dict)[source]¶ Create a model job
- Parameters
config (dict) -- the config for model
- Returns
A response to model creation
-
create_endpoint_config
(self, config: dict)[source]¶ Create an endpoint config
- Parameters
config (dict) -- the config for endpoint-config
- Returns
A response to endpoint config creation
-
create_endpoint
(self, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Create an endpoint
- Parameters
config (dict) -- the config for endpoint
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to endpoint creation
-
update_endpoint
(self, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None)[source]¶ Update an endpoint
- Parameters
config (dict) -- the config for endpoint
wait_for_completion (bool) -- if the program should keep running until job finishes
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
A response to endpoint update
-
describe_training_job
(self, name: str)[source]¶ Return the training job info associated with the name
- Parameters
name (str) -- the name of the training job
- Returns
A dict contains all the training job info
-
describe_training_job_with_log
(self, job_name: str, positions, stream_names: list, instance_count: int, state: int, last_description: dict, last_describe_job_call: float)[source]¶ Return the training job info associated with job_name and print CloudWatch logs
-
describe_tuning_job
(self, name: str)[source]¶ Return the tuning job info associated with the name
- Parameters
name (str) -- the name of the tuning job
- Returns
A dict contains all the tuning job info
-
describe_model
(self, name: str)[source]¶ Return the SageMaker model info associated with the name
- Parameters
name (str) -- the name of the SageMaker model
- Returns
A dict contains all the model info
-
describe_transform_job
(self, name: str)[source]¶ Return the transform job info associated with the name
- Parameters
name (str) -- the name of the transform job
- Returns
A dict contains all the transform job info
-
describe_processing_job
(self, name: str)[source]¶ Return the processing job info associated with the name
- Parameters
name (str) -- the name of the processing job
- Returns
A dict contains all the processing job info
-
describe_endpoint_config
(self, name: str)[source]¶ Return the endpoint config info associated with the name
- Parameters
name (str) -- the name of the endpoint config
- Returns
A dict contains all the endpoint config info
-
describe_endpoint
(self, name: str)[source]¶ - Parameters
name (str) -- the name of the endpoint
- Returns
A dict contains all the endpoint info
-
check_status
(self, job_name: str, key: str, describe_function: Callable, check_interval: int, max_ingestion_time: Optional[int] = None, non_terminal_states: Optional[Set] = None)[source]¶ Check status of a SageMaker job
- Parameters
job_name (str) -- name of the job to check status
key (str) -- the key of the response dict that points to the state
describe_function (python callable) -- the function used to retrieve the status
args -- the arguments for the function
check_interval (int) -- the time interval in seconds which the operator will check the status of any SageMaker job
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
non_terminal_states (set) -- the set of nonterminal states
- Returns
response of describe call after job is done
-
check_training_status_with_log
(self, job_name: str, non_terminal_states: set, failed_states: set, wait_for_completion: bool, check_interval: int, max_ingestion_time: Optional[int] = None)[source]¶ Display the logs for a given training job, optionally tailing them until the job is complete.
- Parameters
job_name (str) -- name of the training job to check status and display logs for
non_terminal_states (set) -- the set of non_terminal states
failed_states (set) -- the set of failed states
wait_for_completion (bool) -- Whether to keep looking for new log entries until the job completes
check_interval (int) -- The interval in seconds between polling for new log entries and job completion
max_ingestion_time (int) -- the maximum ingestion time in seconds. Any SageMaker jobs that run longer than this will fail. Setting this to None implies no timeout for any SageMaker job.
- Returns
None
-
list_training_jobs
(self, name_contains: Optional[str] = None, max_results: Optional[int] = None, **kwargs)[source]¶ This method wraps boto3's list_training_jobs. The training job name and max results are configurable via arguments. Other arguments are not, and should be provided via kwargs. Note boto3 expects these in CamelCase format, for example:
list_training_jobs(name_contains="myjob", StatusEquals="Failed")
- Parameters
name_contains -- (optional) partial name to match
max_results -- (optional) maximum number of results to return. None returns infinite results
kwargs -- (optional) kwargs to boto3's list_training_jobs method
- Returns
results of the list_training_jobs request
-
list_processing_jobs
(self, **kwargs)[source]¶ This method wraps boto3's list_processing_jobs. All arguments should be provided via kwargs. Note boto3 expects these in CamelCase format, for example:
list_processing_jobs(NameContains="myjob", StatusEquals="Failed")
- Parameters
kwargs -- (optional) kwargs to boto3's list_training_jobs method
- Returns
results of the list_processing_jobs request
-