Source code for airflow.providers.amazon.aws.operators.sagemaker_tuning
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook
from airflow.providers.amazon.aws.operators.sagemaker_base import SageMakerBaseOperator
from airflow.utils.decorators import apply_defaults
[docs]class SageMakerTuningOperator(SageMakerBaseOperator):
"""
Initiate a SageMaker hyperparameter tuning job.
This operator returns The ARN of the tuning job created in Amazon SageMaker.
:param config: The configuration necessary to start a tuning job (templated).
For details of the configuration parameter see
:py:meth:`SageMaker.Client.create_hyper_parameter_tuning_job`
:type config: dict
:param aws_conn_id: The AWS connection ID to use.
:type aws_conn_id: str
:param wait_for_completion: Set to True to wait until the tuning job finishes.
:type wait_for_completion: bool
:param check_interval: If wait is set to True, the time interval, in seconds,
that this operation waits to check the status of the tuning job.
:type check_interval: int
:param max_ingestion_time: If wait is set to True, the operation fails
if the tuning job doesn't finish within max_ingestion_time seconds. If you
set this parameter to None, the operation does not timeout.
:type max_ingestion_time: int
"""
[docs] integer_fields = [
['HyperParameterTuningJobConfig', 'ResourceLimits', 'MaxNumberOfTrainingJobs'],
['HyperParameterTuningJobConfig', 'ResourceLimits', 'MaxParallelTrainingJobs'],
['TrainingJobDefinition', 'ResourceConfig', 'InstanceCount'],
['TrainingJobDefinition', 'ResourceConfig', 'VolumeSizeInGB'],
['TrainingJobDefinition', 'StoppingCondition', 'MaxRuntimeInSeconds'],
]
@apply_defaults
def __init__(
self,
*,
config: dict,
wait_for_completion: bool = True,
check_interval: int = 30,
max_ingestion_time: Optional[int] = None,
**kwargs,
):
super().__init__(config=config, **kwargs)
self.config = config
self.wait_for_completion = wait_for_completion
self.check_interval = check_interval
self.max_ingestion_time = max_ingestion_time
[docs] def expand_role(self) -> None:
if 'TrainingJobDefinition' in self.config:
config = self.config['TrainingJobDefinition']
if 'RoleArn' in config:
hook = AwsBaseHook(self.aws_conn_id, client_type='iam')
config['RoleArn'] = hook.expand_role(config['RoleArn'])
[docs] def execute(self, context) -> dict:
self.preprocess_config()
self.log.info(
'Creating SageMaker Hyper-Parameter Tuning Job %s', self.config['HyperParameterTuningJobName']
)
response = self.hook.create_tuning_job(
self.config,
wait_for_completion=self.wait_for_completion,
check_interval=self.check_interval,
max_ingestion_time=self.max_ingestion_time,
)
if response['ResponseMetadata']['HTTPStatusCode'] != 200:
raise AirflowException(f'Sagemaker Tuning Job creation failed: {response}')
else:
return {'Tuning': self.hook.describe_tuning_job(self.config['HyperParameterTuningJobName'])}