Source code for airflow.providers.amazon.aws.operators.sagemaker_tuning

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional

from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.base_aws import AwsBaseHook
from airflow.providers.amazon.aws.operators.sagemaker_base import SageMakerBaseOperator
from airflow.utils.decorators import apply_defaults


[docs]class SageMakerTuningOperator(SageMakerBaseOperator): """ Initiate a SageMaker hyperparameter tuning job. This operator returns The ARN of the tuning job created in Amazon SageMaker. :param config: The configuration necessary to start a tuning job (templated). For details of the configuration parameter see :py:meth:`SageMaker.Client.create_hyper_parameter_tuning_job` :type config: dict :param aws_conn_id: The AWS connection ID to use. :type aws_conn_id: str :param wait_for_completion: Set to True to wait until the tuning job finishes. :type wait_for_completion: bool :param check_interval: If wait is set to True, the time interval, in seconds, that this operation waits to check the status of the tuning job. :type check_interval: int :param max_ingestion_time: If wait is set to True, the operation fails if the tuning job doesn't finish within max_ingestion_time seconds. If you set this parameter to None, the operation does not timeout. :type max_ingestion_time: int """
[docs] integer_fields = [ ['HyperParameterTuningJobConfig', 'ResourceLimits', 'MaxNumberOfTrainingJobs'], ['HyperParameterTuningJobConfig', 'ResourceLimits', 'MaxParallelTrainingJobs'], ['TrainingJobDefinition', 'ResourceConfig', 'InstanceCount'], ['TrainingJobDefinition', 'ResourceConfig', 'VolumeSizeInGB'], ['TrainingJobDefinition', 'StoppingCondition', 'MaxRuntimeInSeconds'],
] @apply_defaults def __init__( self, *, config: dict, wait_for_completion: bool = True, check_interval: int = 30, max_ingestion_time: Optional[int] = None, **kwargs, ): super().__init__(config=config, **kwargs) self.config = config self.wait_for_completion = wait_for_completion self.check_interval = check_interval self.max_ingestion_time = max_ingestion_time
[docs] def expand_role(self) -> None: if 'TrainingJobDefinition' in self.config: config = self.config['TrainingJobDefinition'] if 'RoleArn' in config: hook = AwsBaseHook(self.aws_conn_id, client_type='iam') config['RoleArn'] = hook.expand_role(config['RoleArn'])
[docs] def execute(self, context) -> dict: self.preprocess_config() self.log.info( 'Creating SageMaker Hyper-Parameter Tuning Job %s', self.config['HyperParameterTuningJobName'] ) response = self.hook.create_tuning_job( self.config, wait_for_completion=self.wait_for_completion, check_interval=self.check_interval, max_ingestion_time=self.max_ingestion_time, ) if response['ResponseMetadata']['HTTPStatusCode'] != 200: raise AirflowException(f'Sagemaker Tuning Job creation failed: {response}') else: return {'Tuning': self.hook.describe_tuning_job(self.config['HyperParameterTuningJobName'])}

Was this entry helpful?