Source code for airflow.contrib.operators.sagemaker_base_operator

# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import json

from typing import Iterable

from airflow.contrib.hooks.sagemaker_hook import SageMakerHook
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults


[docs]class SageMakerBaseOperator(BaseOperator): """ This is the base operator for all SageMaker operators. :param config: The configuration necessary to start a training job (templated) :type config: dict :param aws_conn_id: The AWS connection ID to use. :type aws_conn_id: str """
[docs] template_fields = ['config']
[docs] template_ext = ()
[docs] ui_color = '#ededed'
[docs] integer_fields = [] # type: Iterable[Iterable[str]]
@apply_defaults def __init__(self, config, aws_conn_id='aws_default', *args, **kwargs): super(SageMakerBaseOperator, self).__init__(*args, **kwargs) self.aws_conn_id = aws_conn_id self.config = config self.hook = None
[docs] def parse_integer(self, config, field): if len(field) == 1: if isinstance(config, list): for sub_config in config: self.parse_integer(sub_config, field) return head = field[0] if head in config: config[head] = int(config[head]) return if isinstance(config, list): for sub_config in config: self.parse_integer(sub_config, field) return head, tail = field[0], field[1:] if head in config: self.parse_integer(config[head], tail) return
[docs] def parse_config_integers(self): # Parse the integer fields of training config to integers # in case the config is rendered by Jinja and all fields are str for field in self.integer_fields: self.parse_integer(self.config, field)
[docs] def expand_role(self): pass
[docs] def preprocess_config(self): self.log.info( 'Preprocessing the config and doing required s3_operations' ) self.hook = SageMakerHook(aws_conn_id=self.aws_conn_id) self.hook.configure_s3_resources(self.config) self.parse_config_integers() self.expand_role() self.log.info( 'After preprocessing the config is:\n {}'.format( json.dumps(self.config, sort_keys=True, indent=4, separators=(',', ': ')))
)
[docs] def execute(self, context): raise NotImplementedError('Please implement execute() in sub class!')

Was this entry helpful?