Source code for airflow.executors.base_executor

# -*- coding: utf-8 -*-
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from builtins import range
from collections import OrderedDict

# To avoid circular imports
import airflow.utils.dag_processing
from airflow.configuration import conf
from airflow.settings import Stats
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.state import State

[docs]class BaseExecutor(LoggingMixin): def __init__(self, parallelism=PARALLELISM): """ Class to derive in order to interface with executor-type systems like Celery, Mesos, Yarn and the likes. :param parallelism: how many jobs should run at one time. Set to ``0`` for infinity :type parallelism: int """ self.parallelism = parallelism self.queued_tasks = OrderedDict() self.running = {} self.event_buffer = {}
[docs] def start(self): # pragma: no cover
""" Executors may need to get things started. For example LocalExecutor starts N workers. """
[docs] def queue_command(self, simple_task_instance, command, priority=1, queue=None): key = simple_task_instance.key if key not in self.queued_tasks and key not in self.running:"Adding to queue: %s", command) self.queued_tasks[key] = (command, priority, queue, simple_task_instance) else:"could not queue task %s", key)
[docs] def queue_task_instance( self, task_instance, mark_success=False, pickle_id=None, ignore_all_deps=False, ignore_depends_on_past=False, ignore_task_deps=False, ignore_ti_state=False, pool=None, cfg_path=None): pool = pool or task_instance.pool # TODO (edgarRd): AIRFLOW-1985: # cfg_path is needed to propagate the config values if using impersonation # (run_as_user), given that there are different code paths running tasks. # For a long term solution we need to address AIRFLOW-1986 command = task_instance.command_as_list( local=True, mark_success=mark_success, ignore_all_deps=ignore_all_deps, ignore_depends_on_past=ignore_depends_on_past, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state, pool=pool, pickle_id=pickle_id, cfg_path=cfg_path) self.queue_command( airflow.utils.dag_processing.SimpleTaskInstance(task_instance), command, priority=task_instance.task.priority_weight_total, queue=task_instance.task.queue)
[docs] def has_task(self, task_instance): """ Checks if a task is either queued or running in this executor :param task_instance: TaskInstance :return: True if the task is known to this executor """ if task_instance.key in self.queued_tasks or task_instance.key in self.running: return True
[docs] def sync(self):
""" Sync will get called periodically by the heartbeat method. Executors should override this to perform gather statuses. """
[docs] def heartbeat(self): # Triggering new jobs if not self.parallelism: open_slots = len(self.queued_tasks) else: open_slots = self.parallelism - len(self.running) num_running_tasks = len(self.running) num_queued_tasks = len(self.queued_tasks) self.log.debug("%s running task instances", num_running_tasks) self.log.debug("%s in queue", num_queued_tasks) self.log.debug("%s open slots", open_slots) Stats.gauge('executor.open_slots', open_slots) Stats.gauge('executor.queued_tasks', num_queued_tasks) Stats.gauge('executor.running_tasks', num_running_tasks) self.trigger_tasks(open_slots) # Calling child class sync method self.log.debug("Calling the %s sync method", self.__class__) self.sync()
[docs] def trigger_tasks(self, open_slots): """ Trigger tasks :param open_slots: Number of open slots :return: """ sorted_queue = sorted( [(k, v) for k, v in self.queued_tasks.items()], key=lambda x: x[1][1], reverse=True) for i in range(min((open_slots, len(self.queued_tasks)))): key, (command, _, queue, simple_ti) = sorted_queue.pop(0) self.queued_tasks.pop(key) self.running[key] = command self.execute_async(key=key, command=command, queue=queue, executor_config=simple_ti.executor_config)
[docs] def change_state(self, key, state): self.log.debug("Changing state: %s", key) self.running.pop(key, None) self.event_buffer[key] = state
[docs] def fail(self, key): self.change_state(key, State.FAILED)
[docs] def success(self, key): self.change_state(key, State.SUCCESS)
[docs] def get_event_buffer(self, dag_ids=None): """ Returns and flush the event buffer. In case dag_ids is specified it will only return and flush events for the given dag_ids. Otherwise it returns and flushes all :param dag_ids: to dag_ids to return events for, if None returns all :return: a dict of events """ cleared_events = dict() if dag_ids is None: cleared_events = self.event_buffer self.event_buffer = dict() else: for key in list(self.event_buffer.keys()): dag_id, _, _, _ = key if dag_id in dag_ids: cleared_events[key] = self.event_buffer.pop(key) return cleared_events
[docs] def execute_async(self, key, command, queue=None, executor_config=None): # pragma: no cover """ This method will execute the command asynchronously. """ raise NotImplementedError()
[docs] def end(self): # pragma: no cover """ This method is called when the caller is done submitting job and is wants to wait synchronously for the job submitted previously to be all done. """ raise NotImplementedError()
[docs] def terminate(self): """ This method is called when the daemon receives a SIGTERM """ raise NotImplementedError()

Was this entry helpful?