# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import re
import uuid
import copy
from airflow.contrib.hooks.gcs_hook import GoogleCloudStorageHook
from airflow.contrib.hooks.gcp_dataflow_hook import DataFlowHook
from airflow.models import BaseOperator
from airflow.version import version
from airflow.utils.decorators import apply_defaults
[docs]class DataFlowJavaOperator(BaseOperator):
"""
Start a Java Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.
**Example**: ::
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date':
(2016, 8, 1),
'email': ['alex@vanboxel.be'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=30),
'dataflow_default_options': {
'project': 'my-gcp-project',
'zone': 'us-central1-f',
'stagingLocation': 'gs://bucket/tmp/dataflow/staging/',
}
}
dag = DAG('test-dag', default_args=default_args)
task = DataFlowJavaOperator(
gcp_conn_id='gcp_default',
task_id='normalize-cal',
jar='{{var.value.gcp_dataflow_base}}pipeline-ingress-cal-normalize-1.0.jar',
options={
'autoscalingAlgorithm': 'BASIC',
'maxNumWorkers': '50',
'start': '{{ds}}',
'partitionType': 'DAY'
},
dag=dag)
.. seealso::
For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
:param jar: The reference to a self executing DataFlow jar (templated).
:type jar: str
:param job_name: The 'jobName' to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key ``'jobName'`` in ``options`` will be overwritten.
:type job_name: str
:param dataflow_default_options: Map of default job options.
:type dataflow_default_options: dict
:param options: Map of job specific options.
:type options: dict
:param gcp_conn_id: The connection ID to use connecting to Google Cloud
Platform.
:type gcp_conn_id: str
:param delegate_to: The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.
:type delegate_to: str
:param poll_sleep: The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.
:type poll_sleep: int
:param job_class: The name of the dataflow job class to be executed, it
is often not the main class configured in the dataflow jar file.
:type job_class: str
``jar``, ``options``, and ``job_name`` are templated so you can use variables in them.
Note that both
``dataflow_default_options`` and ``options`` will be merged to specify pipeline
execution parameter, and ``dataflow_default_options`` is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.
It's a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.
.. code-block:: python
default_args = {
'dataflow_default_options': {
'project': 'my-gcp-project',
'zone': 'europe-west1-d',
'stagingLocation': 'gs://my-staging-bucket/staging/'
}
}
You need to pass the path to your dataflow as a file reference with the ``jar``
parameter, the jar needs to be a self executing jar (see documentation here:
https://beam.apache.org/documentation/runners/dataflow/#self-executing-jar).
Use ``options`` to pass on options to your job.
.. code-block:: python
t1 = DataFlowJavaOperator(
task_id='datapflow_example',
jar='{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.jar',
options={
'autoscalingAlgorithm': 'BASIC',
'maxNumWorkers': '50',
'start': '{{ds}}',
'partitionType': 'DAY',
'labels': {'foo' : 'bar'}
},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)
"""
[docs] template_fields = ['options', 'jar', 'job_name']
@apply_defaults
def __init__(
self,
jar,
job_name='{{task.task_id}}',
dataflow_default_options=None,
options=None,
gcp_conn_id='google_cloud_default',
delegate_to=None,
poll_sleep=10,
job_class=None,
*args,
**kwargs):
super(DataFlowJavaOperator, self).__init__(*args, **kwargs)
dataflow_default_options = dataflow_default_options or {}
options = options or {}
options.setdefault('labels', {}).update(
{'airflow-version': 'v' + version.replace('.', '-').replace('+', '-')})
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.jar = jar
self.job_name = job_name
self.dataflow_default_options = dataflow_default_options
self.options = options
self.poll_sleep = poll_sleep
self.job_class = job_class
[docs] def execute(self, context):
bucket_helper = GoogleCloudBucketHelper(
self.gcp_conn_id, self.delegate_to)
self.jar = bucket_helper.google_cloud_to_local(self.jar)
hook = DataFlowHook(gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
poll_sleep=self.poll_sleep)
dataflow_options = copy.copy(self.dataflow_default_options)
dataflow_options.update(self.options)
hook.start_java_dataflow(self.job_name, dataflow_options,
self.jar, self.job_class)
[docs]class DataflowTemplateOperator(BaseOperator):
"""
Start a Templated Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.
:param template: The reference to the DataFlow template.
:type template: str
:param job_name: The 'jobName' to use when executing the DataFlow template
(templated).
:param dataflow_default_options: Map of default job environment options.
:type dataflow_default_options: dict
:param parameters: Map of job specific parameters for the template.
:type parameters: dict
:param gcp_conn_id: The connection ID to use connecting to Google Cloud
Platform.
:type gcp_conn_id: str
:param delegate_to: The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.
:type delegate_to: str
:param poll_sleep: The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.
:type poll_sleep: int
It's a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.
.. seealso::
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
.. code-block:: python
default_args = {
'dataflow_default_options': {
'project': 'my-gcp-project',
'region': 'europe-west1',
'zone': 'europe-west1-d',
'tempLocation': 'gs://my-staging-bucket/staging/',
}
}
}
You need to pass the path to your dataflow template as a file reference with the
``template`` parameter. Use ``parameters`` to pass on parameters to your job.
Use ``environment`` to pass on runtime environment variables to your job.
.. code-block:: python
t1 = DataflowTemplateOperator(
task_id='datapflow_example',
template='{{var.value.gcp_dataflow_base}}',
parameters={
'inputFile': "gs://bucket/input/my_input.txt",
'outputFile': "gs://bucket/output/my_output.txt"
},
gcp_conn_id='gcp-airflow-service-account',
dag=my-dag)
``template``, ``dataflow_default_options``, ``parameters``, and ``job_name`` are
templated so you can use variables in them.
Note that ``dataflow_default_options`` is expected to save high-level options
for project information, which apply to all dataflow operators in the DAG.
.. seealso::
https://cloud.google.com/dataflow/docs/reference/rest/v1b3
/LaunchTemplateParameters
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
For more detail on job template execution have a look at the reference:
https://cloud.google.com/dataflow/docs/templates/executing-templates
"""
[docs] template_fields = ['parameters', 'dataflow_default_options', 'template', 'job_name']
@apply_defaults
def __init__(
self,
template,
job_name='{{task.task_id}}',
dataflow_default_options=None,
parameters=None,
gcp_conn_id='google_cloud_default',
delegate_to=None,
poll_sleep=10,
*args,
**kwargs):
super(DataflowTemplateOperator, self).__init__(*args, **kwargs)
dataflow_default_options = dataflow_default_options or {}
parameters = parameters or {}
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.dataflow_default_options = dataflow_default_options
self.poll_sleep = poll_sleep
self.template = template
self.job_name = job_name
self.parameters = parameters
[docs] def execute(self, context):
hook = DataFlowHook(gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
poll_sleep=self.poll_sleep)
hook.start_template_dataflow(self.job_name, self.dataflow_default_options,
self.parameters, self.template)
[docs]class DataFlowPythonOperator(BaseOperator):
"""
Launching Cloud Dataflow jobs written in python. Note that both
dataflow_default_options and options will be merged to specify pipeline
execution parameter, and dataflow_default_options is expected to save
high-level options, for instances, project and zone information, which
apply to all dataflow operators in the DAG.
.. seealso::
For more detail on job submission have a look at the reference:
https://cloud.google.com/dataflow/pipelines/specifying-exec-params
:param py_file: Reference to the python dataflow pipeline file.py, e.g.,
/some/local/file/path/to/your/python/pipeline/file. (templated)
:type py_file: str
:param job_name: The 'job_name' to use when executing the DataFlow job
(templated). This ends up being set in the pipeline options, so any entry
with key ``'jobName'`` or ``'job_name'`` in ``options`` will be overwritten.
:type job_name: str
:param py_options: Additional python options, e.g., ["-m", "-v"].
:type pyt_options: list[str]
:param dataflow_default_options: Map of default job options.
:type dataflow_default_options: dict
:param options: Map of job specific options.
:type options: dict
:param gcp_conn_id: The connection ID to use connecting to Google Cloud
Platform.
:type gcp_conn_id: str
:param delegate_to: The account to impersonate, if any.
For this to work, the service account making the request must have
domain-wide delegation enabled.
:type delegate_to: str
:param poll_sleep: The time in seconds to sleep between polling Google
Cloud Platform for the dataflow job status while the job is in the
JOB_STATE_RUNNING state.
:type poll_sleep: int
"""
[docs] template_fields = ['options', 'dataflow_default_options', 'job_name', 'py_file']
@apply_defaults
def __init__(
self,
py_file,
job_name='{{task.task_id}}',
py_options=None,
dataflow_default_options=None,
options=None,
gcp_conn_id='google_cloud_default',
delegate_to=None,
poll_sleep=10,
*args,
**kwargs):
super(DataFlowPythonOperator, self).__init__(*args, **kwargs)
self.py_file = py_file
self.job_name = job_name
self.py_options = py_options or []
self.dataflow_default_options = dataflow_default_options or {}
self.options = options or {}
self.options.setdefault('labels', {}).update(
{'airflow-version': 'v' + version.replace('.', '-').replace('+', '-')})
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.poll_sleep = poll_sleep
[docs] def execute(self, context):
"""Execute the python dataflow job."""
bucket_helper = GoogleCloudBucketHelper(
self.gcp_conn_id, self.delegate_to)
self.py_file = bucket_helper.google_cloud_to_local(self.py_file)
hook = DataFlowHook(gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
poll_sleep=self.poll_sleep)
dataflow_options = self.dataflow_default_options.copy()
dataflow_options.update(self.options)
# Convert argument names from lowerCamelCase to snake case.
camel_to_snake = lambda name: re.sub(
r'[A-Z]', lambda x: '_' + x.group(0).lower(), name)
formatted_options = {camel_to_snake(key): dataflow_options[key]
for key in dataflow_options}
hook.start_python_dataflow(
self.job_name, formatted_options,
self.py_file, self.py_options)
[docs]class GoogleCloudBucketHelper(object):
"""GoogleCloudStorageHook helper class to download GCS object."""
def __init__(self,
gcp_conn_id='google_cloud_default',
delegate_to=None):
self._gcs_hook = GoogleCloudStorageHook(gcp_conn_id, delegate_to)
[docs] def google_cloud_to_local(self, file_name):
"""
Checks whether the file specified by file_name is stored in Google Cloud
Storage (GCS), if so, downloads the file and saves it locally. The full
path of the saved file will be returned. Otherwise the local file_name
will be returned immediately.
:param file_name: The full path of input file.
:type file_name: str
:return: The full path of local file.
:rtype: str
"""
if not file_name.startswith('gs://'):
return file_name
# Extracts bucket_id and object_id by first removing 'gs://' prefix and
# then split the remaining by path delimiter '/'.
path_components = file_name[self.GCS_PREFIX_LENGTH:].split('/')
if len(path_components) < 2:
raise Exception(
'Invalid Google Cloud Storage (GCS) object path: {}'
.format(file_name))
bucket_id = path_components[0]
object_id = '/'.join(path_components[1:])
local_file = '/tmp/dataflow{}-{}'.format(str(uuid.uuid4())[:8],
path_components[-1])
self._gcs_hook.download(bucket_id, object_id, local_file)
if os.stat(local_file).st_size > 0:
return local_file
raise Exception(
'Failed to download Google Cloud Storage (GCS) object: {}'
.format(file_name))