# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
import os
import subprocess
import re
import time
from airflow.hooks.base_hook import BaseHook
from airflow.exceptions import AirflowException
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.contrib.kubernetes import kube_client
[docs]class SparkSubmitHook(BaseHook, LoggingMixin):
"""
This hook is a wrapper around the spark-submit binary to kick off a spark-submit job.
It requires that the "spark-submit" binary is in the PATH or the spark_home to be
supplied.
:param conf: Arbitrary Spark configuration properties
:type conf: dict
:param conn_id: The connection id as configured in Airflow administration. When an
invalid connection_id is supplied, it will default to yarn.
:type conn_id: str
:param files: Upload additional files to the executor running the job, separated by a
comma. Files will be placed in the working directory of each executor.
For example, serialized objects.
:type files: str
:param py_files: Additional python files used by the job, can be .zip, .egg or .py.
:type py_files: str
:param driver_classpath: Additional, driver-specific, classpath settings.
:type driver_classpath: str
:param jars: Submit additional jars to upload and place them in executor classpath.
:type jars: str
:param java_class: the main class of the Java application
:type java_class: str
:param packages: Comma-separated list of maven coordinates of jars to include on the
driver and executor classpaths
:type packages: str
:param exclude_packages: Comma-separated list of maven coordinates of jars to exclude
while resolving the dependencies provided in 'packages'
:type exclude_packages: str
:param repositories: Comma-separated list of additional remote repositories to search
for the maven coordinates given with 'packages'
:type repositories: str
:param total_executor_cores: (Standalone & Mesos only) Total cores for all executors
(Default: all the available cores on the worker)
:type total_executor_cores: int
:param executor_cores: (Standalone, YARN and Kubernetes only) Number of cores per
executor (Default: 2)
:type executor_cores: int
:param executor_memory: Memory per executor (e.g. 1000M, 2G) (Default: 1G)
:type executor_memory: str
:param driver_memory: Memory allocated to the driver (e.g. 1000M, 2G) (Default: 1G)
:type driver_memory: str
:param keytab: Full path to the file that contains the keytab
:type keytab: str
:param principal: The name of the kerberos principal used for keytab
:type principal: str
:param name: Name of the job (default airflow-spark)
:type name: str
:param num_executors: Number of executors to launch
:type num_executors: int
:param application_args: Arguments for the application being submitted
:type application_args: list
:param env_vars: Environment variables for spark-submit. It
supports yarn and k8s mode too.
:type env_vars: dict
:param verbose: Whether to pass the verbose flag to spark-submit process for debugging
:type verbose: bool
"""
def __init__(self,
conf=None,
conn_id='spark_default',
files=None,
py_files=None,
driver_classpath=None,
jars=None,
java_class=None,
packages=None,
exclude_packages=None,
repositories=None,
total_executor_cores=None,
executor_cores=None,
executor_memory=None,
driver_memory=None,
keytab=None,
principal=None,
name='default-name',
num_executors=None,
application_args=None,
env_vars=None,
verbose=False):
self._conf = conf
self._conn_id = conn_id
self._files = files
self._py_files = py_files
self._driver_classpath = driver_classpath
self._jars = jars
self._java_class = java_class
self._packages = packages
self._exclude_packages = exclude_packages
self._repositories = repositories
self._total_executor_cores = total_executor_cores
self._executor_cores = executor_cores
self._executor_memory = executor_memory
self._driver_memory = driver_memory
self._keytab = keytab
self._principal = principal
self._name = name
self._num_executors = num_executors
self._application_args = application_args
self._env_vars = env_vars
self._verbose = verbose
self._submit_sp = None
self._yarn_application_id = None
self._kubernetes_driver_pod = None
self._connection = self._resolve_connection()
self._is_yarn = 'yarn' in self._connection['master']
self._is_kubernetes = 'k8s' in self._connection['master']
if self._is_kubernetes and kube_client is None:
raise RuntimeError(
"{master} specified by kubernetes dependencies are not installed!".format(
self._connection['master']))
self._should_track_driver_status = self._resolve_should_track_driver_status()
self._driver_id = None
self._driver_status = None
self._spark_exit_code = None
def _resolve_should_track_driver_status(self):
"""
Determines whether or not this hook should poll the spark driver status through
subsequent spark-submit status requests after the initial spark-submit request
:return: if the driver status should be tracked
"""
return ('spark://' in self._connection['master'] and
self._connection['deploy_mode'] == 'cluster')
def _resolve_connection(self):
# Build from connection master or default to yarn if not available
conn_data = {'master': 'yarn',
'queue': None,
'deploy_mode': None,
'spark_home': None,
'spark_binary': 'spark-submit',
'namespace': 'default'}
try:
# Master can be local, yarn, spark://HOST:PORT, mesos://HOST:PORT and
# k8s://https://<HOST>:<PORT>
conn = self.get_connection(self._conn_id)
if conn.port:
conn_data['master'] = "{}:{}".format(conn.host, conn.port)
else:
conn_data['master'] = conn.host
# Determine optional yarn queue from the extra field
extra = conn.extra_dejson
conn_data['queue'] = extra.get('queue', None)
conn_data['deploy_mode'] = extra.get('deploy-mode', None)
conn_data['spark_home'] = extra.get('spark-home', None)
conn_data['spark_binary'] = extra.get('spark-binary', 'spark-submit')
conn_data['namespace'] = extra.get('namespace', 'default')
except AirflowException:
self.log.debug(
"Could not load connection string %s, defaulting to %s",
self._conn_id, conn_data['master']
)
return conn_data
def get_conn(self):
pass
def _get_spark_binary_path(self):
# If the spark_home is passed then build the spark-submit executable path using
# the spark_home; otherwise assume that spark-submit is present in the path to
# the executing user
if self._connection['spark_home']:
connection_cmd = [os.path.join(self._connection['spark_home'], 'bin',
self._connection['spark_binary'])]
else:
connection_cmd = [self._connection['spark_binary']]
return connection_cmd
def _build_spark_submit_command(self, application):
"""
Construct the spark-submit command to execute.
:param application: command to append to the spark-submit command
:type application: str
:return: full command to be executed
"""
connection_cmd = self._get_spark_binary_path()
# The url ot the spark master
connection_cmd += ["--master", self._connection['master']]
if self._conf:
for key in self._conf:
connection_cmd += ["--conf", "{}={}".format(key, str(self._conf[key]))]
if self._env_vars and (self._is_kubernetes or self._is_yarn):
if self._is_yarn:
tmpl = "spark.yarn.appMasterEnv.{}={}"
else:
tmpl = "spark.kubernetes.driverEnv.{}={}"
for key in self._env_vars:
connection_cmd += [
"--conf",
tmpl.format(key, str(self._env_vars[key]))]
elif self._env_vars and self._connection['deploy_mode'] != "cluster":
self._env = self._env_vars # Do it on Popen of the process
elif self._env_vars and self._connection['deploy_mode'] == "cluster":
raise AirflowException(
"SparkSubmitHook env_vars is not supported in standalone-cluster mode.")
if self._is_kubernetes:
connection_cmd += ["--conf", "spark.kubernetes.namespace={}".format(
self._connection['namespace'])]
if self._files:
connection_cmd += ["--files", self._files]
if self._py_files:
connection_cmd += ["--py-files", self._py_files]
if self._driver_classpath:
connection_cmd += ["--driver-classpath", self._driver_classpath]
if self._jars:
connection_cmd += ["--jars", self._jars]
if self._packages:
connection_cmd += ["--packages", self._packages]
if self._exclude_packages:
connection_cmd += ["--exclude-packages", self._exclude_packages]
if self._repositories:
connection_cmd += ["--repositories", self._repositories]
if self._num_executors:
connection_cmd += ["--num-executors", str(self._num_executors)]
if self._total_executor_cores:
connection_cmd += ["--total-executor-cores", str(self._total_executor_cores)]
if self._executor_cores:
connection_cmd += ["--executor-cores", str(self._executor_cores)]
if self._executor_memory:
connection_cmd += ["--executor-memory", self._executor_memory]
if self._driver_memory:
connection_cmd += ["--driver-memory", self._driver_memory]
if self._keytab:
connection_cmd += ["--keytab", self._keytab]
if self._principal:
connection_cmd += ["--principal", self._principal]
if self._name:
connection_cmd += ["--name", self._name]
if self._java_class:
connection_cmd += ["--class", self._java_class]
if self._verbose:
connection_cmd += ["--verbose"]
if self._connection['queue']:
connection_cmd += ["--queue", self._connection['queue']]
if self._connection['deploy_mode']:
connection_cmd += ["--deploy-mode", self._connection['deploy_mode']]
# The actual script to execute
connection_cmd += [application]
# Append any application arguments
if self._application_args:
connection_cmd += self._application_args
self.log.info("Spark-Submit cmd: %s", connection_cmd)
return connection_cmd
def _build_track_driver_status_command(self):
"""
Construct the command to poll the driver status.
:return: full command to be executed
"""
connection_cmd = self._get_spark_binary_path()
# The url ot the spark master
connection_cmd += ["--master", self._connection['master']]
# The driver id so we can poll for its status
if self._driver_id:
connection_cmd += ["--status", self._driver_id]
else:
raise AirflowException(
"Invalid status: attempted to poll driver " +
"status but no driver id is known. Giving up.")
self.log.debug("Poll driver status cmd: %s", connection_cmd)
return connection_cmd
[docs] def submit(self, application="", **kwargs):
"""
Remote Popen to execute the spark-submit job
:param application: Submitted application, jar or py file
:type application: str
:param kwargs: extra arguments to Popen (see subprocess.Popen)
"""
spark_submit_cmd = self._build_spark_submit_command(application)
if hasattr(self, '_env'):
env = os.environ.copy()
env.update(self._env)
kwargs["env"] = env
self._submit_sp = subprocess.Popen(spark_submit_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
bufsize=-1,
universal_newlines=True,
**kwargs)
self._process_spark_submit_log(iter(self._submit_sp.stdout.readline, ''))
returncode = self._submit_sp.wait()
# Check spark-submit return code. In Kubernetes mode, also check the value
# of exit code in the log, as it may differ.
if returncode or (self._is_kubernetes and self._spark_exit_code != 0):
raise AirflowException(
"Cannot execute: {}. Error code is: {}.".format(
spark_submit_cmd, returncode
)
)
self.log.debug("Should track driver: {}".format(self._should_track_driver_status))
# We want the Airflow job to wait until the Spark driver is finished
if self._should_track_driver_status:
if self._driver_id is None:
raise AirflowException(
"No driver id is known: something went wrong when executing " +
"the spark submit command"
)
# We start with the SUBMITTED status as initial status
self._driver_status = "SUBMITTED"
# Start tracking the driver status (blocking function)
self._start_driver_status_tracking()
if self._driver_status != "FINISHED":
raise AirflowException(
"ERROR : Driver {} badly exited with status {}"
.format(self._driver_id, self._driver_status)
)
def _process_spark_submit_log(self, itr):
"""
Processes the log files and extracts useful information out of it.
If the deploy-mode is 'client', log the output of the submit command as those
are the output logs of the Spark worker directly.
Remark: If the driver needs to be tracked for its status, the log-level of the
spark deploy needs to be at least INFO (log4j.logger.org.apache.spark.deploy=INFO)
:param itr: An iterator which iterates over the input of the subprocess
"""
# Consume the iterator
for line in itr:
line = line.strip()
# If we run yarn cluster mode, we want to extract the application id from
# the logs so we can kill the application when we stop it unexpectedly
if self._is_yarn and self._connection['deploy_mode'] == 'cluster':
match = re.search('(application[0-9_]+)', line)
if match:
self._yarn_application_id = match.groups()[0]
self.log.info("Identified spark driver id: %s",
self._yarn_application_id)
# If we run Kubernetes cluster mode, we want to extract the driver pod id
# from the logs so we can kill the application when we stop it unexpectedly
elif self._is_kubernetes:
match = re.search('\s*pod name: ((.+?)-([a-z0-9]+)-driver)', line)
if match:
self._kubernetes_driver_pod = match.groups()[0]
self.log.info("Identified spark driver pod: %s",
self._kubernetes_driver_pod)
# Store the Spark Exit code
match_exit_code = re.search('\s*Exit code: (\d+)', line)
if match_exit_code:
self._spark_exit_code = int(match_exit_code.groups()[0])
# if we run in standalone cluster mode and we want to track the driver status
# we need to extract the driver id from the logs. This allows us to poll for
# the status using the driver id. Also, we can kill the driver when needed.
elif self._should_track_driver_status and not self._driver_id:
match_driver_id = re.search('(driver-[0-9\-]+)', line)
if match_driver_id:
self._driver_id = match_driver_id.groups()[0]
self.log.info("identified spark driver id: {}"
.format(self._driver_id))
else:
self.log.info(line)
self.log.debug("spark submit log: {}".format(line))
def _process_spark_status_log(self, itr):
"""
parses the logs of the spark driver status query process
:param itr: An iterator which iterates over the input of the subprocess
"""
# Consume the iterator
for line in itr:
line = line.strip()
# Check if the log line is about the driver status and extract the status.
if "driverState" in line:
self._driver_status = line.split(' : ')[1] \
.replace(',', '').replace('\"', '').strip()
self.log.debug("spark driver status log: {}".format(line))
def _start_driver_status_tracking(self):
"""
Polls the driver based on self._driver_id to get the status.
Finish successfully when the status is FINISHED.
Finish failed when the status is ERROR/UNKNOWN/KILLED/FAILED.
Possible status:
SUBMITTED: Submitted but not yet scheduled on a worker
RUNNING: Has been allocated to a worker to run
FINISHED: Previously ran and exited cleanly
RELAUNCHING: Exited non-zero or due to worker failure, but has not yet
started running again
UNKNOWN: The status of the driver is temporarily not known due to
master failure recovery
KILLED: A user manually killed this driver
FAILED: The driver exited non-zero and was not supervised
ERROR: Unable to run or restart due to an unrecoverable error
(e.g. missing jar file)
"""
# When your Spark Standalone cluster is not performing well
# due to misconfiguration or heavy loads.
# it is possible that the polling request will timeout.
# Therefore we use a simple retry mechanism.
missed_job_status_reports = 0
max_missed_job_status_reports = 10
# Keep polling as long as the driver is processing
while self._driver_status not in ["FINISHED", "UNKNOWN",
"KILLED", "FAILED", "ERROR"]:
# Sleep for 1 second as we do not want to spam the cluster
time.sleep(1)
self.log.debug("polling status of spark driver with id {}"
.format(self._driver_id))
poll_drive_status_cmd = self._build_track_driver_status_command()
status_process = subprocess.Popen(poll_drive_status_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
bufsize=-1,
universal_newlines=True)
self._process_spark_status_log(iter(status_process.stdout.readline, ''))
returncode = status_process.wait()
if returncode:
if missed_job_status_reports < max_missed_job_status_reports:
missed_job_status_reports = missed_job_status_reports + 1
else:
raise AirflowException(
"Failed to poll for the driver status {} times: returncode = {}"
.format(max_missed_job_status_reports, returncode)
)
def _build_spark_driver_kill_command(self):
"""
Construct the spark-submit command to kill a driver.
:return: full command to kill a driver
"""
# If the spark_home is passed then build the spark-submit executable path using
# the spark_home; otherwise assume that spark-submit is present in the path to
# the executing user
if self._connection['spark_home']:
connection_cmd = [os.path.join(self._connection['spark_home'],
'bin',
self._connection['spark_binary'])]
else:
connection_cmd = [self._connection['spark_binary']]
# The url ot the spark master
connection_cmd += ["--master", self._connection['master']]
# The actual kill command
connection_cmd += ["--kill", self._driver_id]
self.log.debug("Spark-Kill cmd: %s", connection_cmd)
return connection_cmd
def on_kill(self):
self.log.debug("Kill Command is being called")
if self._should_track_driver_status:
if self._driver_id:
self.log.info('Killing driver {} on cluster'
.format(self._driver_id))
kill_cmd = self._build_spark_driver_kill_command()
driver_kill = subprocess.Popen(kill_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
self.log.info("Spark driver {} killed with return code: {}"
.format(self._driver_id, driver_kill.wait()))
if self._submit_sp and self._submit_sp.poll() is None:
self.log.info('Sending kill signal to %s', self._connection['spark_binary'])
self._submit_sp.kill()
if self._yarn_application_id:
self.log.info('Killing application {} on YARN'
.format(self._yarn_application_id))
kill_cmd = "yarn application -kill {}" \
.format(self._yarn_application_id).split()
yarn_kill = subprocess.Popen(kill_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
self.log.info("YARN killed with return code: %s", yarn_kill.wait())
if self._kubernetes_driver_pod:
self.log.info('Killing pod %s on Kubernetes', self._kubernetes_driver_pod)
# Currently only instantiate Kubernetes client for killing a spark pod.
try:
client = kube_client.get_kube_client()
api_response = client.delete_namespaced_pod(
self._kubernetes_driver_pod,
self._connection['namespace'],
body=client.V1DeleteOptions(),
pretty=True)
self.log.info("Spark on K8s killed with response: %s", api_response)
except kube_client.ApiException as e:
self.log.info("Exception when attempting to kill Spark on K8s:")
self.log.exception(e)