Source code for tests.system.google.cloud.vertex_ai.example_vertex_ai_feature_store
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Vertex AI Feature Store operations.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow import DAG
from airflow.providers.google.cloud.operators.vertex_ai.feature_store import (
GetFeatureViewSyncOperator,
SyncFeatureViewOperator,
)
from airflow.providers.google.cloud.sensors.vertex_ai.feature_store import FeatureViewSyncSensor
[docs]
PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]
DAG_ID = "vertex_ai_feature_store_dag"
[docs]
FEATURE_ONLINE_STORE_ID = "my_feature_online_store_unique"
[docs]
FEATURE_VIEW_ID = "feature_view_publications"
with DAG(
dag_id=DAG_ID,
description="Sample DAG with Vertex AI Feature Store operations.",
schedule="@once",
start_date=datetime(2024, 1, 1),
catchup=False,
tags=["example", "vertex_ai", "feature_store"],
) as dag:
# [START how_to_cloud_vertex_ai_feature_store_sync_feature_view_operator]
[docs]
sync_task = SyncFeatureViewOperator(
task_id="sync_task",
project_id=PROJECT_ID,
location=REGION,
feature_online_store_id=FEATURE_ONLINE_STORE_ID,
feature_view_id=FEATURE_VIEW_ID,
)
# [END how_to_cloud_vertex_ai_feature_store_sync_feature_view_operator]
# [START how_to_cloud_vertex_ai_feature_store_feature_view_sync_sensor]
wait_for_sync = FeatureViewSyncSensor(
task_id="wait_for_sync",
location=REGION,
feature_view_sync_name="{{ task_instance.xcom_pull(task_ids='sync_task', key='return_value')}}",
poke_interval=60, # Check every minute
timeout=600, # Timeout after 10 minutes
mode="reschedule",
)
# [END how_to_cloud_vertex_ai_feature_store_feature_view_sync_sensor]
# [START how_to_cloud_vertex_ai_feature_store_get_feature_view_sync_operator]
get_task = GetFeatureViewSyncOperator(
task_id="get_task",
location=REGION,
feature_view_sync_name="{{ task_instance.xcom_pull(task_ids='sync_task', key='return_value')}}",
)
# [END how_to_cloud_vertex_ai_feature_store_get_feature_view_sync_operator]
sync_task >> wait_for_sync >> get_task
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]
test_run = get_test_run(dag)