Source code for tests.system.google.cloud.vertex_ai.example_vertex_ai_feature_store

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG for Google Vertex AI Feature Store operations.
"""

from __future__ import annotations

import os
from datetime import datetime

from airflow import DAG
from airflow.providers.google.cloud.operators.vertex_ai.feature_store import (
    GetFeatureViewSyncOperator,
    SyncFeatureViewOperator,
)
from airflow.providers.google.cloud.sensors.vertex_ai.feature_store import FeatureViewSyncSensor

[docs] PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs] DAG_ID = "vertex_ai_feature_store_dag"
[docs] REGION = "us-central1"
[docs] FEATURE_ONLINE_STORE_ID = "my_feature_online_store_unique"
[docs] FEATURE_VIEW_ID = "feature_view_publications"
with DAG( dag_id=DAG_ID, description="Sample DAG with Vertex AI Feature Store operations.", schedule="@once", start_date=datetime(2024, 1, 1), catchup=False, tags=["example", "vertex_ai", "feature_store"], ) as dag: # [START how_to_cloud_vertex_ai_feature_store_sync_feature_view_operator]
[docs] sync_task = SyncFeatureViewOperator( task_id="sync_task", project_id=PROJECT_ID, location=REGION, feature_online_store_id=FEATURE_ONLINE_STORE_ID, feature_view_id=FEATURE_VIEW_ID, )
# [END how_to_cloud_vertex_ai_feature_store_sync_feature_view_operator] # [START how_to_cloud_vertex_ai_feature_store_feature_view_sync_sensor] wait_for_sync = FeatureViewSyncSensor( task_id="wait_for_sync", location=REGION, feature_view_sync_name="{{ task_instance.xcom_pull(task_ids='sync_task', key='return_value')}}", poke_interval=60, # Check every minute timeout=600, # Timeout after 10 minutes mode="reschedule", ) # [END how_to_cloud_vertex_ai_feature_store_feature_view_sync_sensor] # [START how_to_cloud_vertex_ai_feature_store_get_feature_view_sync_operator] get_task = GetFeatureViewSyncOperator( task_id="get_task", location=REGION, feature_view_sync_name="{{ task_instance.xcom_pull(task_ids='sync_task', key='return_value')}}", ) # [END how_to_cloud_vertex_ai_feature_store_get_feature_view_sync_operator] sync_task >> wait_for_sync >> get_task from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?